
THUIR at NTCIR-10 INTENT-2 Task∗

Yufei Xue, Fei Chen, Aymeric Damien, Cheng Luo, Xin Li, Shuai Huo, Min Zhang,
Yiqun Liu, Shaoping Ma

State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
z-m@tsinghua.edu.cn

ABSTRACT
This paper describes our approaches and results in NTCIR-
10 INTENT-2 task. In this year, we participate in sub-
tasks for both the Chinese and English topics. We extract
subtopics from multiple resources for these topics, and sever-
al subtopic clustering and re-ranking methods are proposed
in this work. In Document Ranking subtask, we redefine the
novelty of a document and use the new definition to re-rank
the retrieved documents. Based on the existing diversifica-
tion methods, we also try to selectively diversify the search
results for the given queries, according to the query types
determined by our strategies.

Team Name
THUIR

Subtasks
Subtopic Mining(Chinese, English) Document Ranking(Chinese)

Keywords
query intent, subtopic mining, document ranking

1. INTRODUCTION
In NTCIR-10, THUIR group participates in INTENT task,

including the subtopic mining subtask (Chinese and English)
and Document Ranking subtask(Chinese).

For English subtopic mining, we apply two different pro-
cesses for the candidate subtopics coming from external re-
sources (such as Wikipedia, Google Keywords Generator,
Search-Engines Suggestion, etc.) and candidate subtopic-
s coming from web pages (extracted through the result s-
nippet information, anchor text and the ”h” tag in the top
retrieved results of commercial search-engines or our own
built search engine based on ClueWeb). For the first one,
we introduce a new and efficient way to cluster the subtopic-
s, based on the top result snippet information and Jaccard
Similarity Coefficient. For the other one, we use the popular
BM25 and Partition Around Medoid algorithms to cluster
the subtopics.

For Chinese subtopic mining, the approaches are similar
to our work in NTCIR-9. We extract candidate subtopics

∗This work was supported by Natural Science Foundation
(60903107, 61073071) and National High Technology Re-
search and Development (863) Program (2011AA01A205)
of China.

from query suggestion, Wikipeida, user log and some other
resources. A voting strategy is used to rank the subtopics
from different resources. Several re-ranking algorithms are
used to produce differen runs. The most important and nov-
el re-ranking approaches are based on clicked snippets from
search engine. For each topic, we count the frequency of the
terms which have appeared in the clicked search result snip-
pets, and promote the subtopics with high-frequency terms.
Evaluation results show that this method can improve the
D-nDCG values of topics. We also try LDA algorithm on the
clicked snippet text to find important terms for subtopics.

In Document Ranking subtask, we develop new diversi-
fication methods for document re-ranking. Compared to
NTCIR-9, we train new values for parameters of the im-
proved probabilistic model to retrieve documents. We re-
define the document novelty in a new way, and based on
this new definition, we develop a novel method to diversify
the retrieval list. Based on the HITS-based re-ranking algo-
rithm and the D#-measure-based selection algorithm, both
of which are used as a separate diversification method in
NTCIR-9, we selectively diversify the retrieval results, ac-
cording to the type of a query. That is when a query is
determined by our strategy as the navigational type, the al-
gorithm uses HITS to re-rank the retrieved documents with-
out any diversification and when a query is informational,
the algorithm uses the D#-measure-based algorithm to di-
versify the results. Finally, all the strategies are combined
with each other to produce the submitted runs.

2. ENGLISH SUBTOPIC MINING

2.1 External Resource Based Subtopic Min-
ing

We observe that over the internet, there are many inter-
esting services that we can use to help us disambiguate a
query. From these resources, we can extract subtopics for
an ambiguous query as well as, for some, interesting infor-
mation about the subtopic popularity. The resources we
used are:

• Query Completion (Google, Bing, Yahoo)

• Query Suggestion (Google, Bing, Yahoo)

• Google Insights

• Google Keywords Generator

• Wikipedia (Disambiguation feature)

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

124

2.1.1 Candidate subtopics extraction and filtering
To extract the candidate subtopics, we simply submit the

query to these services and scrape the subtopics returned.
Many of these subtopics are irrelevant or duplicated, hence
we apply a filter to keep only the valid ones. We adop-
t a large keyword inclusion filter. This filter removes all
subtopics that do not contain any of the query words. The
original query stop words are discarded such that stop words
are not considered in the candidates.

2.1.2 Snippet Based Clustering
Clustering has always been an important aspect in query

diversification. The snippet information provided by the
search result to summarize the web page, brings us very
useful information and contains some important keywords.
So we propose here a solution using this feature to cluster
our subtopics. For each candidate subtopic, we first submit
each one to the search engines (Google, Bing, Yahoo) and
crawl the snippets of the top 50 results. Then we set a
table with every word found from these snippets and count
their frequencies. In order to know wether two subtopics are
similar or not, we calculate the Jaccard similarity coefficient:

J(A,B) =
|A ∩B|
|A ∪B| (1)

Where A and B are the term frequency vectors of two
different subtopics to be compared. We extend this coeffi-
cient by considering both the words and their frequencies.
(Hence even if many words retrieved for the two subtopics
are the same, their frequencies is different, which can re-
duce their similarity). We implement this feature because
we think that both words retrieved and their frequencies are
important to determine if two subtopics have similar intent
or not. So when we calculate the intersection or the union
of A and B, we add the average score of their frequencies:

Jext(A,B) =

∑
i∈A∩B

fAi
+fBi
2∑

i∈A\B fAi +
∑

i∈B\A fBi +
∑

i∈A∩B
fAi

+fBi
2

(2)
Where fAi is the frequency of the i-th term in the vector.
We then create a clustering algorithm using this extended

Jaccard Similarity.

Algorithm 1 Bottom-up hierarchical clustering algorithm
with extended Jaccard similarity coefficient

1: Select k (define experimentally)
2: Create for every candidate subtopic a cluster
3: for each cluster do
4: for each remaining cluster do
5: if Jext similarity of the the two clusters > k then
6: Combine clusters
7: end if
8: end for
9: end for

10: Repeat 3 while the similarity between two clusters is
above k.

The Jaccard similarity for a cluster is computed as the
average similarity between all its candidate subtopics and
all the other cluster candidate subtopics.

2.1.3 Resources features based cluster ranking

To rank our clusters, we base our approach on a multi
criteria ranking. We use different scores provided by the ex-
ternal resources; for example, in Google Insights or Google
Keywords Generator, a score is associated with each term:
the popularity for Google Insights and the amount of search-
es for Google Keywords Generator. So we apply a ranking
strategy based on the following features with their weights:

• Jaccard Similarity between the subtopic and the orig-
inal query: 5%

• Google Insights score: 15%

• Google Keywords Generator score: 75%

• Belongs to the query suggestion/completion: 5%

We also consider that, if a subtopic belongs to the Wikipedia
disambiguation feature, then the subtopic is important, and
should be granted a better score. In order to compare the
subtopic scores with each other, we normalize the scores
with respect to the maximum score. For example, the top
search in Google Insights or Google keywords generator will
have a score of 1. Thanks to this normalization, even if the
data come from different resources, we are still able to use
them together.

2.2 Top Results Based Subtopic Mining
In the second approach, we propose to find the subtopics

directly from the web pages. To get web pages related to
the query to disambiguate, we use different search-engines:
the commercial ones: Google, Bing and Yahoo, and the one
built by Tsinghua University (TMiner) which is based on
the Clueweb data. In this way, we are sure to only extract
pages that are relevant to the query. We base our approach
on a method slightly similar with the one proposed by [4] in
NTCIR-9.

2.2.1 Subtopics Candidates Extraction
We first submit a query to the search engines, and get

the page results. For TMiner run, we extract the candidate
subtopics from different fragments coming from page snip-
pets, page ”h1” tags and in-link anchor texts. For the com-
mercial search engine runs, we only extract the candidate
subtopics from page snippet (page title and description).
We adopt a vector space model to represent each fragment.

f = (w1,f , w2,f , . . . , wn,f) (3)

Where wi,f is the weight of a unique word i contained in f .
We remove stop words and query words from the frag-

ments, because they do not help us to distinguish between
different fragments.

We then use the BM25 [8] algorithm to evaluate the weight:

wi,f =
k1 + 1)tfi

k1((1− b) + b dl
avdl

) + tfi
log

N − dfi + 0.5

dfi + 0.5
(4)

Where tfi is the occurrence of word i in fragment f , and
dfi is the number of documents that contain i in the cor-
pus. dl is the length of the fragment f . avdl is the average
fragment length for the query. N is the total number of doc-
uments in the entire corpus. We experimentally set k1 = 1
and b = 0.6.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

125

2.2.2 Candidate Subtopics Clustering
We apply a modified Partitioning Around Medoids (PAM)

clustering algorithm to group similar fragments together.
Here is the algorithm:

Algorithm 2 Modified partitioning around medoid algo-
rithm
1: Initialize: randomly select k of the n data points as the

medoids
2: Associate each data point to the closest medoid. (“clos-

est” here is defined using cosine similarity)
3: for each medoid m do
4: for each non-medoid data point o do
5: Swap m and o and compute the total cost of the

configuration
6: end for
7: end for
8: Select the configuration with the lowest cost.
9: repeat steps 2 to 8 until there is no change in the medoid.

The similarity between two fragments is determined us-
ing the cosine similarity between their corresponding weight
vectors calculated as above using the BM25 algorithm. The
PAM algorithm first computes k representative objects, called
medoids. A medoid can be defined as the object of a clus-
ter, whose average dissimilarity to all the other objects in
the cluster is minimal. After finding the set of medoids, each
object of the data set is assigned to the nearest medoid. k is
the number of clusters we want to generate and traditionally
it is fixed as an input of PAM. However, in our task, it is
not suitable as we do not know the number of clusters (in-
tent) a query has; since the number is not predictable. We
have to modify the PAM algorithm to make it to be able to
decide an appropriate k. We first randomly choose k points
as initial cluster medoids. We then assign each points to the
closest medoid. If the closest medoid is over a value we set
experimentally, then we set this point as a new medoid, and
recalculate from the beginning.

2.2.3 Cluster Ranking
We rank the clusters according to their popularity, using

the fragment rank inside the commercial search engine or
TMiner and the URLs diversity from the different fragments
of a cluster. So we give a greater score to the clusters that
contains fragments from higher ranked pages and clusters
that contains fragments from many different URLs. Here is
the formula used to calculate the score for each cluster:

Score(c) =
∑

f∈Frag(c)

(1− w(f)

N
) (5)

Where N is the total number of unique URLs in cluster c
and w(f) is the number of unique URLs containing fragment
f . Learning to rank techniques can also be adopted with
sufficient training examples and we would like to add this to
our future work.

2.2.4 Cluster Name Generation
From the different fragments, we need to generate a clear

name for the cluster. For each cluster, we select the most
frequent word and extend it to an n-gram based on the fre-
quency of the other words. We also set that frequency limit
experimentally. We keep stop words because they can be

interesting to name the intent. Then we check if we need
to add the keyword (that we removed from every fragmen-
t) or not. This is done by checking whether the original
fragments contain the keyword. If more than 50% contains
the keyword, we add it, using its position between the most
frequent words, in order to place it correctly.

2.3 Resources Fusion
To improve diversity, we combine the subtopics we ex-

tracted from both external resources and top result pages.
Both datas are coming from two different aspects of the in-
ternet: the one, which is from the external resources repre-
sents the queries that people are looking for. And the other
one, which is mined from the top results pages, shows the
information provided by the website owners or participants.

2.3.1 Semantic Similarity Re-clustering
To combine our data, we use a linear combination of the

subtopics. After that combination, many subtopics are ac-
tually duplicated, so we have to choose a way to re-cluster
and re-rank the subtopics. We cluster them according to
their semantic similarity, using WordNet and the technique
proposed by [6]. Lin describes a method to compute the
semantic relatedness of word senses using the information
content of the concept in WordNet. We experimentally de-
fine a similarity value to decide wether or not two candidates
should be clustered together. We choose this system for its
speed, but we could also have used both clustering method
presented in this paper (Top results Snippet based or Par-
tition around medoid with cosine similarity) to improve the
precision. However, as all subtopics are already clustered
before the fusion, it is much easier to re-cluster them, and
we do not need a accurate clustering method to get good re-
sult precision. So we try to use a simple semantic similarity
based on WordNet to obtain a tradeoff between speed and
performance.

2.3.2 Re-ranking
To re-rank the subtopics, we normalize them by assigning

them a percentage of the maximum subtopic score of each
query. As a result, every subtopic score is a percentage of
its run best subtopic score. After this normalisation we can
compares the score of all subtopics and re-rank them.

2.4 Submitted Runs
We apply the methods described above to produce these

runs for the English subtopic mining:

• THUIR-S-E-1A: THUIR-S-E-2A + THUIR-S-E-3A +
THUIR-S-E-4A, Linear combination, Semantic simi-
larity based re-clustering

• THUIR-S-E-2A: Extraction from multiple resources (Google
Insights, Google Keywords Generator, Query Sugges-
tion/Completion, Wikipedia) + Snippet based cluster-
ing.

• THUIR-S-E-3A: Extraction From TMiner top result-
s Snippet, Anchors and H1, BM25, Partition around
medoid

• THUIR-S-E-4A: Extraction From Search Engines top
results Snippet + Query Suggestion/Completion, B-
M25, Partition around medoid

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

126

Table 1: Experimental result of English subtopic
mining runs

Runtag I-rec@10 D-nDCG@10 D#-nDCG@10
THUIR-S-E-1A 0.4512 0.4775 0.4644
THUIR-S-E-2A 0.4333 0.4795 0.4564
THUIR-S-E-3A 0.4346 0.4726 0.4536
THUIR-S-E-4A 0.4364 0.5062 0.4713
THUIR-S-E-5A 0.4253 0.4893 0.4573

• THUIR-S-E-5A: Extraction From TMiner top results
Snippet - BM25 - Partition around medoid + Wikipedi-
a + Official Query Suggestion/Completion; Linear com-
bination; Semantic similarity based re-clustering

2.5 Evaluation Results
To evaluate our techniques, we make different combina-

tions, and submit 5 runs. The D#-nDCG, D-nDCG and
I-rec values of the results are shown in Table 3. We can
see that THUIR-S-E-4A is the best in terms of D#-nDCG.
We do not expect this run to perform best. Instead, we
have expected THUIR-S-E-1A, which is the fusion of al-
l our other runs, e.g. THUIR-S-E-2A, THUIR-S-E-3A and
THUIR-S-E-5A, to be the best. Even if the fusion run get-
s a better diversity (I-rec), its relevancy (D-nDCG) is re-
duced. It is considered that we should choose a more effec-
tive re-clustering algorithm than a simple semantic similar-
ity based re-clustering. On the other hand, THUIR-S-E-4A
only relies on the top results of commercial search engines,
which obtains the best D-nDCG score (relevancy) and a
good diversity score (I-rec), implying the best D#-nDCG
value. THUIR-S-E-5A is our baseline, and is comparable
with THUIR-S-E-1A, THUIR-S-E-3A and THUIR-S-E-4A.
We can see that all methods bring a better diversity but not
always a better relevancy. The official overview [10] shows
that the differences among these submitted runs are not s-
tatistical significantly.

3. CHINESE SUBTOPIC MINING

3.1 Candidate Subtopics From External Re-
sources

Similar to English subtopic mining, the Chinese candidate
subtopics also come from different external resources.

For each query, we use query suggestions from 4 different
search engines. Every search engine returns 10 suggestions,
hence there are at most 40 related queries. Obviously, lots of
them are reduplicated because different search engines may
recommend the same queries. It is reasonable to assume
that a query which is recommended by some different search
engines is more likely to be an important user intent than
a query which is recommended by only one search engine.
Based on this assumption, we use the search engines to vote
for all related queries. In detail, we rank the recommended
queries based on the frequency of each query’s appearance
in different search engines.

In this step, we ignore the auxiliary words and white s-
paces in Chinese. We also filter out the queries which are
substrings of the given query, since such queries could not
be a subtopic of the given query.

We use Chinese Wikipeida to obtain more subtopics in
three different ways. In Wikipedia, a title can be associat-

ed with more than one Wikipedia topic. There are a lot of
disambiguation pages to resolve this kind of conflicts. D-
ifferent meanings of an ambiguous topic are listed on the
disambiguation page. We look up each query in Wikipedia.
If it has a disambiguation page, the topics on the page would
be regarded as the candidate subtopics.

For each given query, we also compare it with all the topics
in Wikipedia. If any topic contains the given query as a
substring, this topic is also adopted as a candidate.

On the page of topic in Wikipedia, there is usually an
index which summaries different facets of the topic. If we
find the given query in Wikipedia as a topic, all the index
items on the page will be added into the candidate subtopic
collection. Besides Wikipedia, we introduce the index of
another Chinese online encyclopedia (hudong.com) as our
corpus.

We combine the candidates from online encyclopedias with
the ones from query suggestion using the same voting strat-
egy. Different from query suggestion, the candidates from
different way of encyclopedia are given different weights in
voting.

In Wikipedia, a topic may belong to several categories. If
different topics belong to the same category, they should be
the same kind of concepts in some way. In our subtopic list,
if two subtopics belong to a same category in Wikipedia, we
give a penalty on the weight of the reduplicate subtopic.

3.2 Re-ranking Based on Coverage Rate
From the methods described above, we have obtained sev-

eral candidate subtopics for each query, and a weight as-
signed for each subtopic. However, for some subtopics ex-
tracted for the same query, they share the same weight. Ob-
viously, it is inappropriate to rank these subtopics randomly,
so we re-rank them based on the coverage rate between the
subtopics and the query.

In most cases, if a subtopic covers more terms of a query,
it will more likely be relevant to the query and becomes a
subtopic. And when some subtopics cover the same number
of terms, a shorter one indicates that it is more concise and
describes the subtopic of the query better. So we segment
the query into different words and define the coverage rate
between a subtopic and a query as the ratio between the
number of words in the query that appear in the subtopic
and the number of all the words in the query. To take the
factors of coverage rate and length of the subtopic into con-
sideration, we adjust the weight for each subtopic as fol-
lows: weightnew = weightold + 0.05 × (coverage rate) +
0.005/(intent length). The minimum difference between
the original weights is 0.1, so only when the weights of the
subtopics are the same do the coverage rate and the length
of the subtopic make a difference. The larger the coverage
rate and the shorter the subtopic are, the higher weight the
subtopic gets.

3.3 Optimizing Intent List by Snippet Click

3.3.1 Snippet Click Model
Looking into users’ interaction process with the search

engine, it is reasonable to think that users’ click through
behavior contains clues of their information needs. When
user clicks a certain search result, it does not necessarily
mean that he is interested in the document due to he has
not viewed yet. His first impression mainly comes from the

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

127

title and snippet of the search result. We can assume that
he/she is interested in the snippets of the corresponding re-
sults because these snippets might describe their intents.
Dou et al.[3] study the problem of using aggregate click-
through log, and find that although some individual user
clicks are unreliable, the aggregation of a large number of
user clicks provides a valuable indicator of relevance prefer-
ence. Furthermore, we can assume that: 1)on search result
level, the snippet of the search result which is clicked more
frequently by users reflects more important user intent. 2) If
we split the sentences in the snippet into a list of terms, the
more often the term appears in snippet, the more probably
it is useful to describe the user intent.

Based on these observations, we propose a method utiliz-
ing clicked snippet to recognize user’s intent and re-rank the
list. For each query q, we can crawl its top ten search results
to build a snippet document and title document with snippet
content and user behavior data. More specifically, in each
document, we will make sure that for term t in document

freqsnippet(t) =

10∑
i=0

(freqsnippeti (t) ∗ CTi)

freqtitle(t) =

10∑
i=0

(freqtitlei (t) ∗ CTi)

where freqsnippeti(t) and freqtitlei(t) and represents the ter-
m t’s frequency in the ith search result’s snippet and title.
CTi means the times that the ith search result is clicked by
users.

For each term t in snippet and title, we can calculate its
score as follows:

TermScore (t) =

10∑
i=0

(freqsnippet(t) + λ ∗ freqtitle(t))

λ is the weight of the title. In our experiment, the al-
gorithm gets best performance when λ = 1.2. In this way,
we build a term list L ranked by the score in descending
order. We delete the terms which appear in the original
query because it brings no additional information to help us
understand the user intent.

It should be noted that the term list might be very long
and the score might range in a very large scale. The statis-
tics on 99 queries from NTCIR-10 INTENT-2 dataset show
that the longest list contains 1079 terms. In some way, the
descending order of score means the decreasing order of re-
liability. Actually we only choose the top k terms. To solve
the score range problem, we normalize the top k scores ac-
cording to their order. Suppose there are k terms in total
and the ith score should be:

NormScore (ti) = 1.0− (α− β) ∗ i
k

We take α and β as two independent parameters to make
sure that the score ranges between α and β. In the experi-
ments, α is set to 1.0 and β is set to 0.5. In the other way
the sum of two terms’ scores is always larger than one’s.

With this list we can optimize the intent list by re-ranking
it. For a certain candidate c, its snippet score can be calcu-
lated as:

SnippetScore (c, k) =

i<k∑
i=0

NormScore(ti) ∗ Iti in c

Suppose OrigScore(c) is the original score in the intent list.
It is necessary to combine the original score with the snippet
score.

Score (t, λ, k) = λ∗OrigScore(t)+(1− λ)NormScore(t, k)

We can use this score to re-rank intent candidate list. λ
and k are two parameters in this method. Experiments on
NTCIR-10 INTENT-2 labelled dataset shows when λ = 0.53
and k = 12, the experiments get the best performance.

3.3.2 LDA on Snippet Click Document
Latent Dirichlet allocation (LDA) is a topic model that is

presented by D. Blei, etc.[1] In LDA, a document is viewed as
a mixture of different topics. With the LDA model, we can
estimate the latent topics and their probability distribution.

In last section, we have introduced the snippet document.
It is reasonable to assume that the snippet document con-
tains the most popular subtopics of the query. So we use
LDA to estimate the topics of the snippet click document.
These topics may correspond to the various intents of the
given query.

In LDA, a topic is represented by the probabilities of the
words under it. There is no explicit phrase representation of
topics. Therefore the topics from LDA can not be added into
the intent list directly. We have to bridge the gap between
the explicit search intents and the implicit topics of the s-
nippet click document. Algorithm 3 shows the process of
transferring the implicit topic to the explicit representation.

Algorithm 3

1: Construct the snippet document d of given query q.
2: Remove all the appearances of given query from d, and

get a new document d′.
3: Estimate the latent topics t1, t2, ..., tn of d′.
4: for each topic tk do
5: Get two words with the largest probabilities to be

generated, denoted by wk1 and wk2.
6: end for
7: Connect up q to wk1 and wk2, and get 4 different phrases.
8: If any of the phrases has appeared in the snippet click

document d, add the phrase into the intent candidate
list with weight 0.4.

In the algorithm, we use the high-probability words in
topic to represent the topic. We remove the given query
from the d so that the query itself will not appear as high-
probability words. After we get the topics, we connect up q
to the words from different topics to make up some phrases.
We add a phrase into the candidate intent when it appears
in d, so that the selected phrases may be human-readable.

3.4 Evaluation Results
According to the previous described methods, we make

different combinations of the methods and submit 5 runs.
The runs are introduced in Table 2.

The mean values of D#-nDCG, D-nDCG and I-rec are
shown in Table 3. It shows that THUIR-S-C-3A gets the
highest D-nDCG value. This run combines basic voting with
fine adjustment and random walk query list. These strate-
gies successfully make the important intents to reach high
ranks. The I-rec of this run is the lowest. Of all the runs,
THUIR-S-C-5A is our baseline. Compared it to THUIR-S-
C-1A, THUIR-S-C-2A and THUIR-S-C-3A, we can see that

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

128

Table 2: Methods of Runs
Runtag QS CR RW Snippet LDA

THUIR-S-C-1A ! ! ! ! !

THUIR-S-C-2A ! ! !

THUIR-S-C-3A ! ! ! !

THUIR-S-C-4A ! ! !*

THUIR-S-C-5A ! !

QR: Intent candidates from query recommendations,
Wikipedia and Hudong.
CR: Coverage Rate.
RW: Random walk over user click graph.
Snippet: Optimizing with snippet document.
LDA: Optimizing with the LDA result of snippet document.
* Use SogouQ corpus for constructing click graph in stead
of the larger corpus.

Table 3: Experimental results of Chinese subtopic
mining runs

Runtag I-rec@10 D-nDCG@10 D#-nDCG@10
THUIR-S-C-1A 0.3839 0.4843 0.4341
THUIR-S-C-2A 0.3839 0.4816 0.4327
THUIR-S-C-3A 0.3786 0.5028 0.4407
THUIR-S-C-4A 0.3792 0.4739 0.4266
THUIR-S-C-5A 0.3892 0.4798 0.4345

all the extra efforts can improve the D-nDCG value, but
decrease the I-rec value. In D#-nDCG measure, THUIR-
S-C-3A also gets the highest value. THUIR-S-C-4A is a
special run which is based on public dataset. It does not
perform as well as THUIR-S-C-2A in terms of any measure
since the data size in random walk is much smaller. From
the Overview paper [10] we can find all these submitted runs
are not significantly different in terms of D-nDCG, I-rec and
D-#nDCG.

4. CHINESE DOCUMENT RANKING

4.1 Retrieval Models and Dataset
In the retrieval step, we leverage the same improved prob-

abilistic model and the same retrieval strategies as the ones
we used in NTCIR-9[12] for document ranking. We also use
SogouT dataset to train different parameters in these mod-
els or retrieval strategies. These parameters are determined
and shown in Table 4.

4.2 Result Re-ranking with HITS
In NTCIR-9, we adopt HITS to re-rank the baseline search

results in the Document ranking subtask. It re-ranks the
documents that are the mth biggest in terms of either Au-
thority or Hub values up to the front. The new rank is
determined based on the original rank, the Authority and

Table 4: Parameter values of the improved proba-
bilistic model

part α1 k1 b ω
Content 0.2 0.6 0.35 0.2
Anchor 0.1 1.6 0.3 0.5
Click 0.1 1.4 0.55 0.3

the Hub values of the document[5]. It is proved that HITS
can stably improve the diversity of the search result on both
the TREC-based dataset and the SogouT dataset[12].

4.3 D#-measure-based Selection Algorithm
To evaluate the diversified result list, Sakai et al. propose

the D#-measure [11]. It computes a global gain for every
document by linearly combining the gains with respect to
subtopics. It also takes the subtopic recall of the result list
into account. Based on this, We provide a D#-measure-
based selection algorithm[12]. This algorithm iteratively se-
lect a document, which has the currently biggest global gain
and subtopic recall, to produce a diversified result list.

4.4 Query Type Identification
Previous work on understanding user search goals has

shown that user queries can be classified as informational or
navigational[2][9]. If the type of a user query can be identi-
fied, appropriate document ranking strategy can be applied
to the query type to improve the performance of the search
engine. For example, if a user types in “IJCAI13”, which is
a navigational query, the homepage of the conference should
be placed on the top. While an informational query requires
different documents on all aspects. In this paper, we use
three features mentioned in [7]: n Clicks Satisfied (nCS),
top n Results Satisfied (nRS), Click Distribution (CD) to
train a decision tree model to identify the query type. The
features are described as below:

• nCS: When submitting a navigational type query, the
user tends to click a small number of URLs in the
results list. The nCS feature is defined as:
nCS(Query q) = #(Session of q that involves less than
n clicks) /#(Session of q)

• nRS: When submitting a navigational type query, the
user tends to click the first few URLs in the results
list. The nRS feature is defined as:
nRS(Query q) = #(Session of q that involves clicks
only on top n results)/#(Session of q)

• CD: If the goal of a query is navigational, most clicks
should be concentrated on a single result. The CD
feature is defined as:
CD(Query q) = #(Click on the most popular result of
q)/ #(Click on all results of q)

Based on the three features, we use standard C4.5 algo-
rithm to train a decision tree model to identify the query
type. The algorithm is described as below:

4.5 Selective Diversification
With the query type known in advance, we can selective-

ly diversify its search result. We use the way described in
Section 4.4 to determine the query type. If a query belongs
to the navigational type, then the result list retrieved for
the query needs no diversification. In this situation, we use
the HITS to re-rank the results retrieved using the strate-
gies described in Section 4.2 to produce the final result list.
On the other hand, if the query belongs to the informational
type, we use the D#-measure-based selection algorithm to
diversify the retrieval result.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

129

Algorithm 4 A decision tree based query type identification

Require: Feature nCS, nRS, CD; Threshold p1, p2, p3, p4;
1: if nRS ≥ p1 then
2: predict = 1
3: else
4: if nCS ≥ p2 then
5: if CD ≥ p3 then predict = 1
6: else
7: predict = 0
8: end if
9: else

10: if CD ≥ p4 then
11: predict = 1
12: else
13: predict = 0
14: end if
15: end if
16: end if

4.6 Diversify Results Based on Novelty
As we know, most queries have not only one subtopic.

In fact, how to find subtopics of a query and measure the
probability that which subtopic it belongs to as well as the
probability that which document can satisfy the subtopics
remains a problem. Therefore, we are focused on diversify-
ing the adhoc results to achieve diversity directly. Our main
concept of the method is that when deciding the candidate
document placed in position k, we select a document that
can recommend the most novel information despite all the
results before position k. There are two assumptions for this
method. One is that in a given adhoc result, all the docu-
ments are of high relevance to the query and ranked by the
probability that they can meet the user’s information need-
s in the query. The other is that the adhoc result covers
a variety of information needs users may have, regardless
of the position of each document. So we do not need to
search for documents which meet the needs of all kinds of
information, but better ranking the documents to cover d-
ifferent information needs in the top results. If the original
top n documents of adhoc results are d0, d1, d2, d3, . . . dn−1,
the goal is to re-rank the documents for diversity of top k
results. Let S be the current re-ranked list and ωi be a cor-
pus vector that represents the content of the document di.
Function f(di, S) is used to measure the novel information
that document di can introduce into the selected documents
S. Then our strategy can be described as Algorithm 5.

Algorithm 5

1: Set S = d0
2: while ||ωi|| > 0 and |S| < k do
3: ωi = argmaxf(di, S)
4: Add di to the end of S
5: end while
6: for i from 1 to n do
7: if di are not in S then
8: Add di to the end of S
9: end if

10: end for

This algorithm is to select top k results and maintain the
relative order of the other results to form a new result list.

Following we introduce the two important factors in the al-
gorithm in detail, the corpus vector ωi and the novelty func-
tion f .

4.6.1 Document representation
The corpus vector should describe the content of the doc-

ument and can be a representative of the document compar-
ing with the other documents in the adhoc list. We try to
use anchor, title and text information of all the documents
in the adhoc list to form a lexicon separately. Suppose the
lexicon contains N terms, then a document can be described
as an N-dimensional vector. The dimension N is based on
the size of adhoc result list, to be exact, the top n documents
of adhoc results. The ith component value of the vector is
computed using tf · idf value of the ith term according to
the document. See the following,

ω =< w1, w2, . . . wN >=< tf1 · idf1, tf2 · idf2, . . . tfN · idfN >
(6)

We try different n from 500 to 3000 on the queries, finding
that n = 1000 is a relatively stable range on performance.
At the same time, we find that using page-level anchor to
build the lexicon is the best in ERR-IA evaluation. Finally
we choose the page-level anchor of top 1000 documents in
adhoc result list to form the vector and re-rank adhoc results
by selecting top k = 100 documents according to novelty.

4.6.2 Measure the novelty
The novelty function f(di, S) should integrate the differ-

ences between di and each document in S in terms of the
relevance of di with respect to the query. We use the cosine
value of two vectors to measure the difference between two
documents. The novelty of the candidate di is computed as
follows,

f(di, S) =
∑
dj∈S

αj + λ× cosωi, ωj > (7)

The weight parameter αj = N- original rank of dj . We try
different λ from 0.01 to 0.3 and find λ = 0.1 is the best in the
result evaluation. Original rank in adhoc list can reflect the
quality of the document itself for the query. Through linear
combination of the weight parameter and the novelty, the
algorithm tends to select the document which can not only
be a good answer for the query but also introduce more
information than documents before. As a result, it may
better satisfy the diverse user’s information needs.

4.7 Submitted Results
In Document ranking subtask, we submit 6 runs. One of

them is produced using the NTCIR-9 system and its name
ends with “R1” as the official required. Other 5 runs are au-
tomatically created by our new systems. Table 5 shows the
descriptions of each submitted runs and Table 6 shows their
evaluation results [10]. The click-based re-rank strategy in
Table 5 is the same as the one described in [12].

As Table 6 shows, THUIR-D-C-3A, which is produced by
the improved probabilistic model, outperforms the THUIR-
D-C-R1, which is produced by the same probabilistic model
but with different parameter values, in terms of all the listed
measures. All the results that are based on THUIR-D-C-3A
are very similar, even though they are produced by different
strategies. In fact, these runs are not significantly different
[10]. This implies these strategies take limit influences to the

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

130

Table 5: Methods of runs
THUIR-D-C-1A THUIR-D-C-2A + click-based re-rank (large click logs).
THUIR-D-C-2A THUIR-D-C-3A + novelty-based re-rank.
THUIR-D-C-3A Retrieve on full text, anchor and click text documents (baseline of 1A and 2A).
THUIR-D-C-4A Subtopic mining + retrieve on multiple subtopics + decay global gain based diverse results selection.
THUIR-D-C-5B Official baseline + HITS-based re-rank + novelty-based re-rank + click-based re-rank (SogouQ).
THUIR-D-C-R1 THUIR-D-C-5 retrieval on full text, anchor text and click text, + HITS-based re-rank.

Table 6: Experimental results of Chinese document ranking runs
I-rec@10 D-nDCG@10 D#-nDCG@10 DIN-nDCG@10 P+Q

THUIR-D-C-1A 0.7288 0.4218 0.5753 0.2868 0.2667
THUIR-D-C-2A 0.7258 0.4201 0.5729 0.2865 0.2663
THUIR-D-C-3A 0.7247 0.4207 0.5727 0.2858 0.2653
THUIR-D-C-4A 0.6731 0.3587 0.5159 0.2611 0.2203
THUIR-D-C-5B 0.6313 0.3571 0.4942 0.2406 0.2298
THUIR-D-C-R1 0.7085 0.4096 0.5590 0.2806 0.2569

retrieval result diversification. Comparing THUIR-D-C-5B,
which takes the retrieval result provided by the NTCIR offi-
cial as its baseline, with the THUIR-D-C-3A-based results,
we may conclude that the improvements of the latter result-
s are caused by using different parameter values. [10] also
show that these improvements are significant. THUIR-D-C-
4A is the only result that is based on the subtopics mined
in the Subtopic mining subtask. We leverage the improved
probabilistic model to retrieve documents for the subtopics
mined in THUIR-S-C-1A, and leverage the strategies de-
scribed in Section 4.4 to determine the type of each query.
THUIR-D-C-4A is then produced using the selective diversi-
fication strategy. It is worse than the THUIR-D-C-3A based
results.

5. CONCLUSIONS
In this paper, we introduce our approaches for NTCIR-10

INTENT-2 task. For subtopic mining subtask, we try to
mine candidates and optimize the ranking of subtopics by
using different data, including query suggestion, Wikipedia,
user log, search result snippet, etc. Our results have shown
that reliable external resources and user behavior data are
helpful for mining subtopics. For document ranking sub-
task, we develop new novelty-based re-ranking method and
the selectively diversification method. The experiment re-
sults show that these approaches can improve the evaluation
values in terms of different kinds of measures.

6. REFERENCES
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent

dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

[2] A. Broder. A taxonomy of web search. In ACM Sigir
forum, volume 36, pages 3–10. ACM, 2002.

[3] Z. Dou, R. Song, X. Yuan, and J.-R. Wen. Are
click-through data adequate for learning web search
rankings? In Proceeding of the 17th ACM conference
on Information and knowledge management, pages
73–82. ACM, 2008.

[4] J. Han, Q. Wang, N. Orii, Z. Dou, T. Sakai, and
R. Song. Microsoft research asia at the ntcir-9 intent
task. In Proceedings of NTCIR-9 Workshop Meeting,
pages 116–122, 2011.

[5] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

[6] D. Lin. An information-theoretic definition of
similarity. In Proceedings of the 15th international
conference on Machine Learning, volume 1, pages
296–304. San Francisco, 1998.

[7] Y. Liu, M. Zhang, L. Ru, and S. Ma. Automatic query
type identification based on click through information.
Information Retrieval Technology, pages 593–600,
2006.

[8] S. Robertson, S. Walker, M. Hancock-Beaulieu,
M. Gatford, and A. Payne. Okapi at trec-4. In
Proceedings of TREC, volume 4, pages 73–96, 1995.

[9] D. Rose and D. Levinson. Understanding user goals in
web search. In Proceedings of the 13th international
conference on World Wide Web, pages 13–19. ACM,
2004.

[10] T. Sakai, Z. Dou, T. Yamamoto, Y. Liu, M. Zhang,
and R. Song. Overview of the ntcir-10 intent-2 task. In
Proceedings of NTCIR-10 Wordshop Meeting, 2013.

[11] T. Sakai and R. Song. Evaluating diversified search
results using per-intent graded relevance. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in
Information Retrieval, pages 1043–1052. ACM, 2011.

[12] Y. Xue, F. Chen, T. Zhu, C. Wang, Z. Li, Y. Liu,
M. Zhang, Y. Jin, and S. Ma. Thuir at ntcir-9 intent
task. In Proceedings of NTCIR-9 Workshop Meeting,
pages 123–128, 2011.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

131

