THUIR at NTCIR-10
INTENT-2 Task

IR Group of Tsinghua University

Yufei Xue, Fei Chen, Aymeric Damien, Cheng Luo, Shuai Huo, Min Zhang, Yiqun Liu, Shaoping Ma
Overview

• THUIR@INTENT2: three subtasks
 – English Subtopic Mining
 – Chinese Subtopic Mining
 – Document Ranking
English Subtopic Mining

- External resources v.s. Top search results

Original Query

- External resources
 - Linear Combination
- Top search results
 - Clustering & Keyword Extraction

Post process and combination
English Subtopic Mining

- External Resource Based Subtopic Mining
 - Subtopic candidate generation
 - Query Completion (Google, Bing, Yahoo)
 - Query Suggestion (Google, Bing, Yahoo)
 - Google Insights / Google Keywords Generator
 - Wikipedia (Disambiguation items)
 - Post process: Remove candidates without any query keywords
 - Linear combination
 - Google Insights: 0.15; Google Keywords Generator: 0.75; Query Suggestion / Completion: 0.05
English Subtopic Mining

- Top Results Based Subtopic Mining
 - Result document description
 - Search result snippets
 - Important fields of result documents ("h1", anchor, ...)
 - BM25 scores are calculated for each word
 - Result clustering
 - PAM (Partitioning Around Medoids) algorithm
 - Without assigning the number of clusters
 - Keyword extraction for each cluster
 - Select the most frequent word and extend it to an n-gram.
 - Rank keywords by their clusters.
English Subtopic Mining

- Combination of subtopics
 - Linear combination
 - Duplication removing with WordNet
 - Normalization and re-ranking.
Chinese Subtopic Mining

- **Candidate subtopic generation**
 - Query suggestions collected from Google, Sogou, Baidu and Bing
 - Disambiguation items
 - collected from Hudong.com and Wikipedia
 - Keywords extracted from LDA topics generated on clicked snippets

- **Candidate ranking**
 - Credibility of external resources (e.g. Wikipedia = 2, Google = 2, Hudong = 1, …)
 - Number of common words
 - Length of the subtopic
 - Number of words in clicked snippets
Chinese Subtopic Mining

- Clicked snippets & user intent
 - User clicks a result => user is interested in the snippets of the results
 - Click-through information: SogouQ
- LDA on clicked snippets
 - 10 implicit topics for each query.
Chinese Subtopic Mining

- Result comparisons
 - Snippet click-through information helps improve candidate ranking
 - Candidates generated by LDA on snippets are not so effective

<table>
<thead>
<tr>
<th></th>
<th>I-rec@10</th>
<th>D-nDCG@10</th>
<th>D#-nDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Query suggestion</td>
<td>0.3792</td>
<td>0.4739</td>
</tr>
<tr>
<td>2</td>
<td>1 + Snippet</td>
<td>0.3786</td>
<td>0.5028</td>
</tr>
<tr>
<td>3</td>
<td>2+LDA</td>
<td>0.3839</td>
<td>0.4843</td>
</tr>
</tbody>
</table>
Document Ranking

- **Selective Diversification**
 - Informational query:
 - IA-Select according to the D#-nDCG value of a document

- **Query Type Identification**
 - nCS(q):
 - While performing a navigational type search request, user tend to click a small number of URLs
 - Session of q that involves less than n clicks) / (session of q)
 - nRS(q):
 - While performing a navigational type search request, user tend to click only the first few URLs.
 - (Session of q that involves clicks only on top n results) / (Session of q)
 - CD(q):
 - (Click on the most popular result of q) / (Click on all results of q)

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigational</td>
<td>NAV</td>
<td>NAV</td>
</tr>
<tr>
<td>Informational & Transactional</td>
<td>91.07%</td>
<td>85.62%</td>
</tr>
<tr>
<td>Precision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall</td>
<td>90.71%</td>
<td>86.18%</td>
</tr>
<tr>
<td>F-measure</td>
<td>0.91</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Document Ranking

- Diversify Results Based on Novelty

Set $S = d_0$

$|S| < k \quad \Rightarrow \quad d_i = \text{argmax } f(d_i, S)$

Add d_0 to S

$|S| < k \quad \Rightarrow \quad f(d_i, S) = \sum_{d_j \in S} (N - r_j) + \lambda \times \cos(w_i, w_j)$

End
Document Ranking

Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>I-rec@10</th>
<th>D-nDCG@10</th>
<th>D#-nDCG@10</th>
<th>DIN-nDCG@10</th>
<th>P+Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.7247</td>
<td>0.4207</td>
<td>0.5727</td>
<td>0.2858</td>
<td>0.2653</td>
</tr>
<tr>
<td>Selectively</td>
<td>0.6731</td>
<td>0.3587</td>
<td>0.5159</td>
<td>0.2611</td>
<td>0.2203</td>
</tr>
<tr>
<td>Novelty based</td>
<td>0.7258</td>
<td>0.4201</td>
<td>0.5729</td>
<td>0.2865</td>
<td>0.2663</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you