

Cattott

Delighting You Always

Understanding the Query: THCIB and THUIS at NTCIR-10 Intent Task

J. Wang¹, G. Tang¹, Y. Xia¹, Q. Zhou¹, F. Zheng¹, Q. Hu², S. Na², Y. Huang²

¹Tsinghua National Laboratory for Information Science and Technology, Tsinghua University

²Canon Information Technology (Beijing) Co. Ltd.

SUMMARY

• TEAM

- THUIS team comprises of researchers from Intelligent Search group, Center for Speech and Language Technology, Tsinghua University
- THCIB is a joint team between THUIS and Canon Information Technology (Beijing) Co. Ltd..

• TASK

SUBTOPIC MINING

Systems are required to return a ranked list of *subtopic strings* in response to a given topic query while the top N subtopic strings should be *both relevant and diversified* as much as possible.

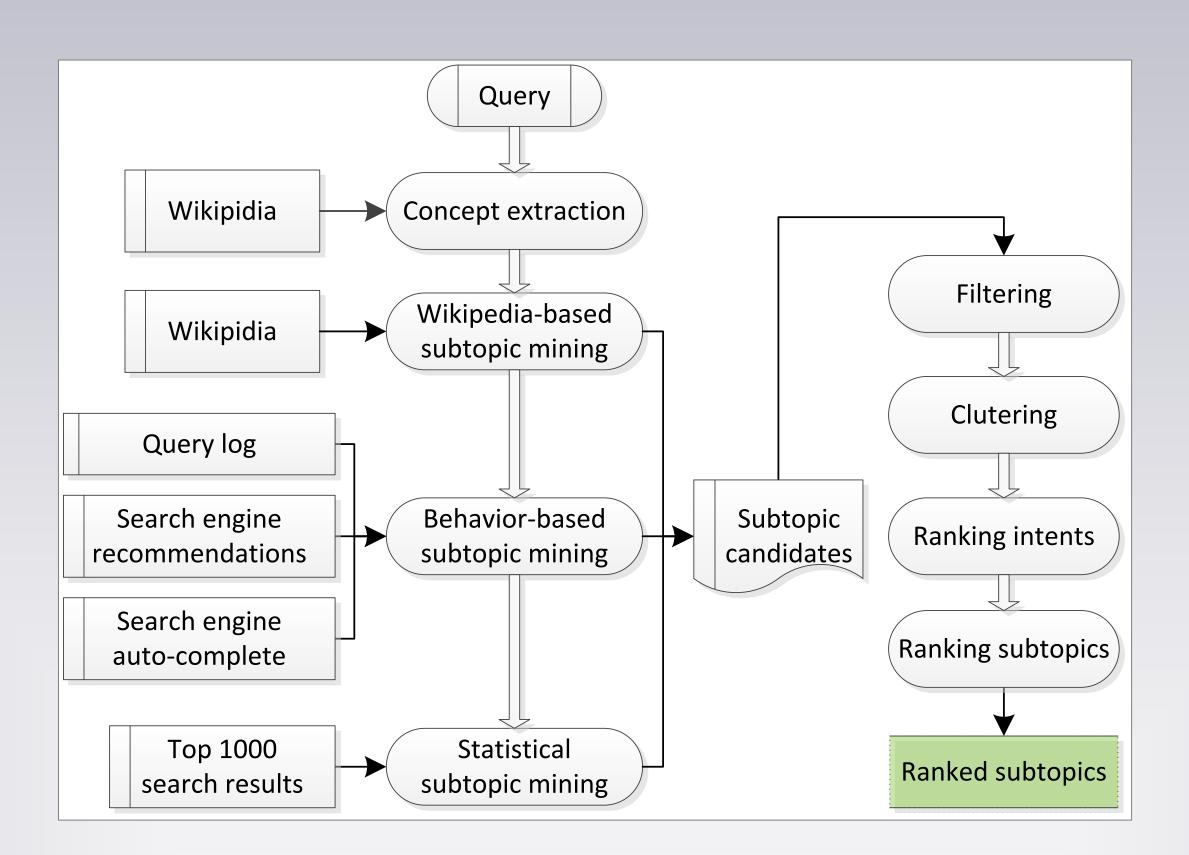
• NOVELTY

 Concept-based query analysis: converting the query into a set of concepts, which are extracted from the knowledge in Wikipedia

"battles in the civil war"

→ "battle", "civil war"

Sense-based text clustering to discover intents underlying the subtopic candidates, which are extracted from multiple resources.


Synonym and polysemy

Unified subtopic ranking model combining relevance, source importance and diversity

MOTIVATION

- ISSUE #1: Query is usually very short
- SOLUTION #1: Appling BIGGER
 CONTEXT in query understanding
 - General knowledge base: Wikipedia
- User behavior data: Query log, search engine auto-completions and suggestions
 - Search results: Title and snippet
- **ISSUE #2**: Subtopic surface strings are many while redundancy is huge
- **SOLUTION #2**: Discover the implicit intents by clustering the subtopic surface strings
 - A sense-based clustering algorithm
- **ISSUE #3**: Relevance is no longer effective for intent ranking
- **SOLUTION** #3: Ranking intents with a unified model combining relevance and diversity

SYSTEM

Architecture of THCIB/THUIS intent mining system

METHODS

SUBTOPIC CANDIATE MINING (SCM)

- 1. Extracting Wikipedia concept(s) from Query
- Pre-processing: word segmentation, stemming and tokenization
- Wikipedia concept (entry) matching

2. Extending the Query

- Wikipedia synonyms (redirects and disambiguation pages)
- Intent schemas: manipulating concepts in the query,

prepositions, and wildcard(s)

- Concept repositioning

3. Mining Subtopics in Wikipedia

- Wikipedia ambiguous entry: related concepts
- Wikipedia redirects: synonyms
- Wikipedia concept definition

4. Mining Subtopics in User Behavior Data

- Mining co-occurring relevant queries in Query log
- Search engine tools based on user behavior data: autocompletion, recommendations

5. Mining Subtopics in Search Results

- A word sense induction (WSI) framework (LDA)
- Extracting keywords from each topic as extensions of the query

SUBTOPIC CANDIDATE RANKING (SCR)

- 0. Subtopic Filtering
- 1. Assigning source importance score
- 2. Calculating relevance score
- 3. Finding intents in the subtopics
- A sense-based **subtopic** similarity measure (title and snippet of every top 20 search results using the subtopic as query).
- Affinity Propagation (AP) clustering algorithm
- 4. Entity analysis
- Exclusive entities
 - "furniture for small spaces New York",
 - "furniture for small spaces Los Angeles".
- Using Freebase to recognize the exclusive homogeneous entities
- 5. Calculating intent importance score

$$w_{\rm IN} = \sum_{i=1}^{N} [w_{\rm ST}(t_i) + w_{\rm SC}(t_i)]$$

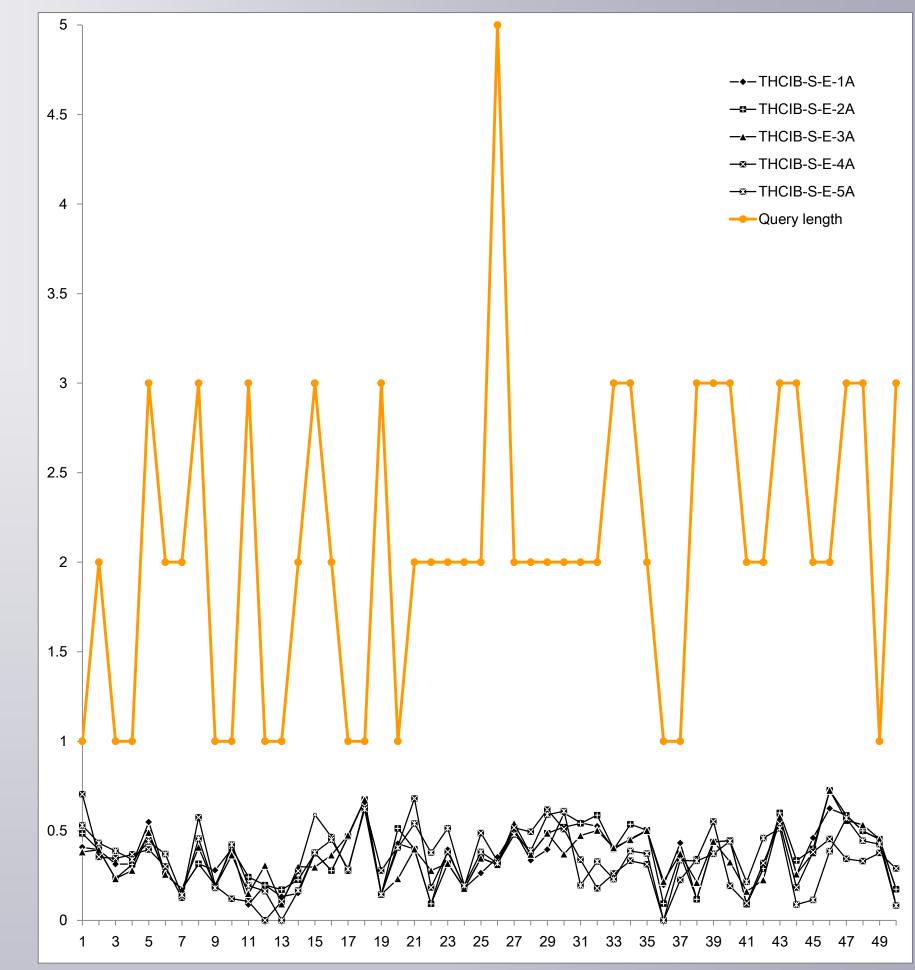
- relevance score of the subtopic
- importance score of the source

6. Subtopic selecting

- Iteratively get the top subtopic candidate in each cluster
- Assign penalty to the exclusive homogeneous entities

EVALUATION

Submitted RUNS


- THCIB-S-E-1A: SCM (1.Concept extraction + 3.Wikipedia + 4.Querylog + 5.Search results + 6.Filtering) + SCR (source importance+ relevance)
- *THCIB-S-E-2A*: THCIB-S-E-1A + SCM (2.Query expansion)
- THCIB-S-E-3A: THCIB-S-E-2A +SCR(4.Entity analysis)
- THCIB-S-E-4A: THCIB-S-E-3A
- +SCR(3.Intent mining with standard AP + 5.Intent ranking + 6. Subtopic selecting)
- *THCIB-S-E-5A*: THCIB-S-E-4A + SCR (Revised AP)

cut-off	run name	I-rec	D-nDCG	D#-nDCG
	THCIB-S-E-1A	0.3785	0.3384	0.3584
	THCIB-S-E-2A	0.3797	0.3499	0.3648
@10	THCIB-S-E-3A	0.3681	0.3383	0.3532
	THCIB-S-E-4A	0.3502	0.3323	0.3413
	THCIB-S-E-5A	0.3662	0.3215	0.3438
	THCIB-S-E-1A	0.5769	0.3274	0.4522
	THCIB-S-E-2A	0.5899	0.3406	0.4653
@20	THCIB-S-E-3A	0.5544	0.3251	0.4397
	THCIB-S-E-4A	0.477	0.2784	0.3777
	THCIB-S-E-5A	0.5395	0.304	0.4218
	THCIB-S-E-1A	0.693	0.3177	0.5054
	THCIB-S-E-2A	0.6743	0.3284	0.5014
@30	THCIB-S-E-3A	0.6486	0.3244	0.4865
	THCIB-S-E-4A	0.5855	0.2691	0.4273
	THCIB-S-E-5A	0.6339	0.2986	0.4662

Evaluation results of English Subtopic Mining runs

	cut-off	run name	I-rec	D-nDCG	D#-nDCG
	@10	THCIB-S-C-1A	0.3381	0.4923	0.4402
		THCIB-S-C-2A	0.3622	0.4157	0.389
		THCIB-S-C-3A	0.3953	0.4504	0.4228
		THCIB-S-C-4A	0.4036	0.462	0.4328
	@20	THCIB-S-C-1A	0.5322	0.4776	0.5049
		THCIB-S-C-2A	0.4467	0.3385	0.3926
		THCIB-S-C-3A	0.5067	0.3969	0.4518
		THCIB-S-C-4A	0.5163	0.4215	0.4689
	@30	THCIB-S-C-1A	0.5842	0.4677	0.5259
		THCIB-S-C-2A	0.5249	0.3272	0.426
		THCIB-S-C-3A	0.5571	0.3814	0.4692
		THCIB-S-C-4A	0.5636	0.3764	0.47

Evaluation results of Chinese Subtopic Mining runs

System performance upon English topics and query length

CONCLUSION

- Incorporating concepts and word senses in subtopic mining and ranking brings marginal performance gain.
- The unified intent ranking model is promising in producing satisfactory results. Further tuning is planned as the future work.