Introduction

- BBN's statistical translation system for Patent MT
 - Initially developed for newswire, and later for broadcast news, web forums, etc.
 - Best performing system in MT evaluations under DARPA’s GALE, BOLT, and other MT-related programs
 - All techniques initially developed for other domains work well on patents
 - Special handling for patents helps
 - Lots of potential
 - Patents are easier to translate
 - State-of-the-art accuracies in both automatic and manual evaluations
 - Helpful in real patent examination and possibly other tasks

Statistical Machine Translation

- **Translation framework**
 - Parallel Text
 - Target Language Text
 - Rule Extraction
 - LM Estimation
 - Chart Parsing
 - K-best Generation
 - Feature Extraction
 - With Extended Features
 - 1-Best Translation
 - Decoding
 - Re-ranking

- **String-to-dependency hierarchical translation model**
 - Extract only hierarchical rules with well-formed dependencies on the target side:
 \[X_1 : X_r \xrightarrow{\text{POS tag}} X_r \xrightarrow{\text{NB}} X_N \]
 - Use POS tag of head word as non-terminal labels on the target side
 - Extract all phrasal rules, ignoring dependency
 - **Features:**
 - 10+ core features
 - ~50K sparse binary features

Application to Patent MT

- **Data preparation**
 - Parallel data: 45M words of Chinese-English sentence pairs
 - Extra LM data: 14B words of US patents in English
 - Development data: 2K Chinese-English sentence pairs, split into tuning and test sets
- **Model training**
 - Translation model: trained on the 45M parallel corpus
 - Language models:
 - 45M LM: trained on the target side of the 45M parallel corpus
 - 14B LM: trained on the 45M LM data plus 14B English patents
 - Addressing issues related to patent data (NTCIR-9):
 - Consistent tokenizer of ASCII strings in source and target
 - E.g., “IS-1000” vs. “IS – 1000”
 - Special token sharing in translation and language model
 - One special token for each category: numbers (e.g., 2,596), e.g., “IS-1000” vs. “IS – 1000”
 - **Patent case-LM**
 - Retrain the case-LM on 45M LM data
 - Word segmentation lexicon
 - Re-optimize on 45M parallel corpus
 - Use only 100 features of the highest weights in each category of the 50K sparse features
 - Address over-fitting due to smaller tuning set
 - **Document-level CLIR-based LM adaptation**
 - Retrieve most relevant passages for a test document in the 14B LM data using CLIR
 - Bias LM for sentences in the test document to these passages

Recent Advances

- **Mistakes features**
 - Model target bigrams given source and vise versa
 - Trait features: model general properties of translation hypotheses, e.g., percent of words that re-order
- **Sentence-level LM adaptation instead of document-level**
 - Patent documents tend to use well-structured sentences and re-use n-grams in other patent documents
 - Extra LM data: 14B words of US patents in English
 - Extract all phrasal rules, ignoring dependency
- **Bias LM for sentences in the test document to these passages**
 - Helpful in real patent examination and possibly other tasks

Results

- **On development set**
 - Development in NTCIR-9 with 45M LM
 - BLEU: 37.71
 - + translation-based true caser: 41.19
 - + recurrent neural network LM: 42.13
 - + translation-based true caser
 - + recurrent neural network LM
 - NTCIR-9 system with 14B LM
 - BLEU: 39.14
 - + translation-based true caser: 41.09
 - + recurrent neural network LM: 42.13
 - + translation-based true caser

- **Official evaluation**
 - Automatic Evaluation (BLEU)
 - System: BBN-1
 - BLEU: 39.98
 - BBN-2
 - BLEU: 42.68
 - Baseline1
 - BLEU: 36.69
 - Baseline2
 - BLEU: 36.95
 - + translation-based true caser: 41.09
 - + recurrent neural network LM: 42.13
 - + translation-based true caser

- **Typical example**
 - Source: 对于每一像素，变焦引擎210使用在以上等式(2)和(4)中的加权来确定所
 - 该像素是否在三角形内
 - MT output: For each pixel, the rendering engine 210 uses the edge equation set forth in equations (2) to (4) above to determine whether the pixel is in a triangle
 - Reference: For each pixel, the shading engine 210 determines whether the pixel is in the triangle using the edge equations set forth in equations (2) to (4) above.

Statistical Machine Translation

- **Translation framework**
 - **Translation framework**
 - **Parallel Text**
 - **Target Language Text**
 - **Rule Extraction**
 - **LM Estimation**
 - **Chart Parsing**
 - **K-best Generation**
 - **Feature Extraction**
 - **With Extended Features**
 - **1-Best Translation**
 - **Decoding**
 - **Re-ranking**

- **String-to-dependency hierarchical translation model**
 - Extract only hierarchical rules with well-formed dependencies on the target side:
 \[X_1 : X_r \xrightarrow{\text{POS tag}} X_r \xrightarrow{\text{NB}} X_N \]
 - Use POS tag of head word as non-terminal labels on the target side
 - Extract all phrasal rules, ignoring dependency
 - **Features:**
 - 10+ core features
 - ~50K sparse binary features

Application to Patent MT

- **Data preparation**
 - Parallel data: 45M words of Chinese-English sentence pairs
 - Extra LM data: 14B words of US patents in English
 - Development data: 2K Chinese-English sentence pairs, split into tuning and test sets
- **Model training**
 - Translation model: trained on the 45M parallel corpus
 - Language models:
 - 45M LM: trained on the target side of the 45M parallel corpus
 - 14B LM: trained on the 45M LM data plus 14B English patents
 - Addressing issues related to patent data (NTCIR-9):
 - Consistent tokenizer of ASCII strings in source and target
 - E.g., “IS-1000” vs. “IS – 1000”
 - Special token sharing in translation and language model
 - One special token for each category: numbers (e.g., 2,596), math expressions (e.g., p<0.004), material names (e.g., C15H23N2O5P), and labeled names (e.g., 3.05g)
 - **Patent case-LM**
 - Retrain the case-LM on 45M LM data
 - Word segmentation lexicon
 - Re-optimize on 45M parallel corpus
 - Use only 100 features of the highest weights in each category of the 50K sparse features
 - Address over-fitting due to smaller tuning set
 - **Document-level CLIR-based LM adaptation**
 - Retrieve most relevant passages for a test document in the 14B LM data using CLIR
 - Bias LM for sentences in the test document to these passages

Recent Advances

- **Mistakes features**
 - Model target bigrams given source and vise versa
 - Trait features: model general properties of translation hypotheses, e.g., percent of words that re-order
- **Sentence-level LM adaptation instead of document-level**
 - Patent documents tend to use well-structured sentences and re-use n-grams in other patent documents
 - Extra LM data: 14B words of US patents in English
 - Extract all phrasal rules, ignoring dependency
 - **Bias LM for sentences in the test document to these passages**
 - Helpful in real patent examination and possibly other tasks

Results

- **On development set**
 - Development in NTCIR-9 with 45M LM
 - BLEU: 37.71
 - + translation-based true caser: 41.19
 - + recurrent neural network LM: 42.13
 - + translation-based true caser
 - + recurrent neural network LM
 - NTCIR-9 system with 14B LM
 - BLEU: 39.14
 - + translation-based true caser: 41.09
 - + recurrent neural network LM: 42.13
 - + translation-based true caser

- **Official evaluation**
 - Automatic Evaluation (BLEU)
 - System: BBN-1
 - BLEU: 39.98
 - BBN-2
 - BLEU: 42.68
 - Baseline1
 - BLEU: 36.69
 - Baseline2
 - BLEU: 36.95
 - + translation-based true caser: 41.09
 - + recurrent neural network LM: 42.13
 - + translation-based true caser

- **Typical example**
 - Source: 对于每一像素，变焦引擎210使用在以上等式(2)和(4)中的加权来确定所
 - 该像素是否在三角形内
 - MT output: For each pixel, the rendering engine 210 uses the edge equation set forth in equations (2) to (4) above to determine whether the pixel is in a triangle
 - Reference: For each pixel, the shading engine 210 determines whether the pixel is in the triangle using the edge equations set forth in equations (2) to (4) above.