BBN's Systems for the Chinese-English Sub-task of the NTCIR-10 PatentMT Evaluation

Raytheon **BBN Technologies**

MT

Zhongqiang Huang, Jacob Devlin, Spyros Matsoukas, and Rich Schwartz

Raytheon BBN Technologies

Introduction

- BBN's statistical translation system for Patent MT
 - Initially developed for newswire, and later for broadcast news, web forums, etc.
 - Best performing system in MT evaluations under DARPA's GALE, BOLT, and other MT-related programs
 - All techniques initially developed for other domains work well on patents
 - Special handling for patents helps
- Lots of potential
 - Patents are easier to translate

Recent Advances

- Miscellaneous features
 - Model target bigrams given source and vise versa
 - Trait features: model general properties of translation hypotheses, e.g., percent of words that re-order
- Sentence-level LM adaptation instead of document-level
 - Patent documents tend to use well-structured sentences and re-use n-grams in other patent documents

LM

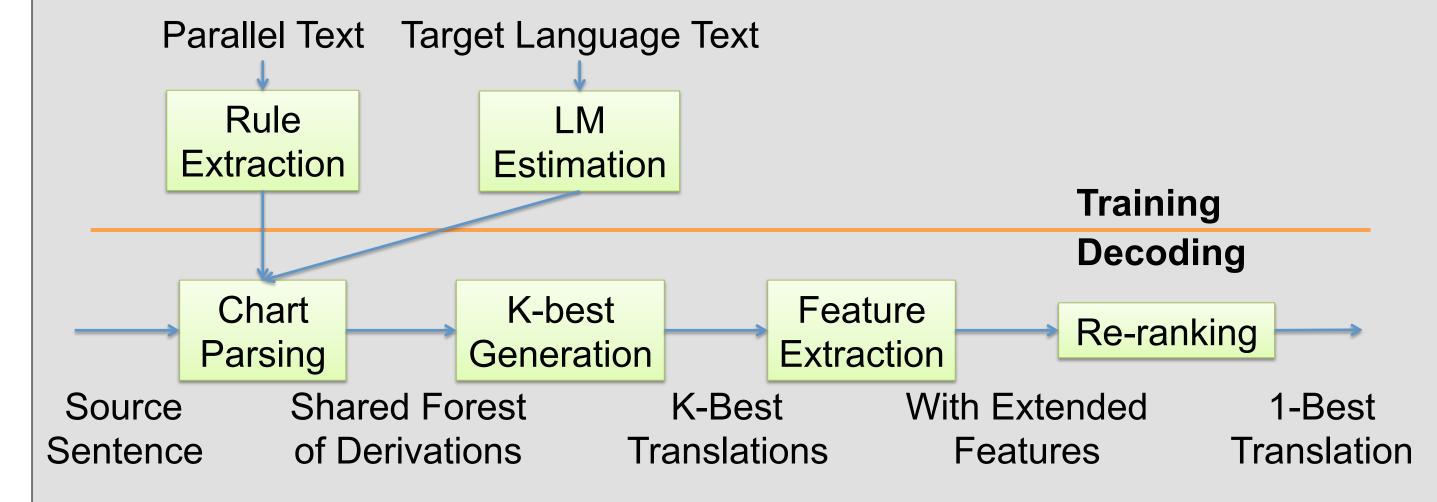
Corpus

0.1

- State-of-the-art accuracies in both automatic and manual evaluations
- Helpful in real patent examination and possibly other tasks

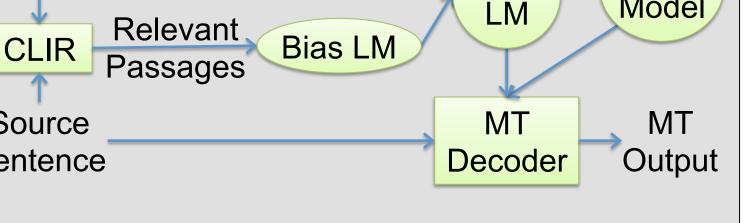
Statistical Machine Translation

Translation framework



- String-to-dependency hierarchical translation model
 - Extract only hierarchical rules with well-formed dependencies on the target side:

 $X_1: X_1$ 出发 去 $X_2 \rightarrow VB_1: NR_1$ leaves for NN_2



Sent.

Percentage of test source n-grams observed in training

Sentence-level LM adaptation

General

LM

- Robust context-dependent modeling
 - Sparse high-order context-dependent translation models

 $P(t_{s_i}, t_{s_{i-1}} | s_i, s_{i-1}, s_{i+1}, s_{i-2})$

- Solution: interpolate all possible back-off components
 - Sparse context types are added independently of each other

$P(t_{s_{i-1}} | t_{s_i}, S_i, S_{i-1}, S_{i+1}, S_{i-2})$

- $= \omega_0 P(t_{s_{i-1}} | t_{s_i}, s_i, s_{i-1}, s_{i+1}, s_{i-2}) + \omega_1 P(t_{s_{i-1}} | t_{s_i}, s_i, s_{i-1}, s_{i+1}) + \dots + \omega_{30} P(t_{s_{i-1}} | t_{s_i})$
 - Each weight ω_i is a function of the marginal count

$$\omega_{j} \mathbf{P}(t_{s_{i}} | s_{i}, s_{i-1}) = \frac{1}{Z} \alpha_{j} \log(C(s_{i}, s_{i-1})) \frac{C(t_{s_{i}}, s_{i}, s_{i-1})}{C(s_{i}, s_{i-1})}$$

- Weights α are optimized to maximize likelihood on a heldout set
- Use POS tag of head word as non-terminal labels on the target side
- Extract all phrasal rules, ignoring dependency
- Features:
 - 10+ core features
 - ~50K sparse binary features

Application to Patent MT

- Data preparation
 - Parallel data: 45M words of Chinese-English sentence pairs
 - Extra LM data: 14B words of US patents in English
 - Development data: 2K Chinese-English sentence pairs; split into tuning and test sets
- Model training
 - Translation model: trained on the 45M parallel corpus
 - Language models:
 - 45M LM: trained on the target side of the 45M parallel corpus lacksquare
 - 14B LM: trained on the 45M LM data plus 14B English patents
- Addressing issues related to patent data (NTCIR-9)
 - Consistent tokenization of ASCII strings in source and target
 - e.g., "IS-1000" vs. "IS 1000"

- Least useful components are thrown out for efficiency
- Recurrent neural net LM for rescoring
 - Trained on 45M LM data, interpolated with 5-gram LM
- True-casing is treated as a translation problem \bullet
 - Trained on 45M LM data, use rule probabilities, true-case LM probability, and sparse features, e.g., is the word upper cased and a proper noun?

Results

On development set

Development in NTCIR-9	BLEU
Initial system with 45M LM	34.01
+ consistent tokenization	34.56
+ more token sharing	34.97
+ patent case-LM	36.47
 optimized word segmenter 	36.95
+ top 100 features	37.71
+ 14B LM	39.14
	10 01

+ document-level LM adaptation 40.04

Official evaluation

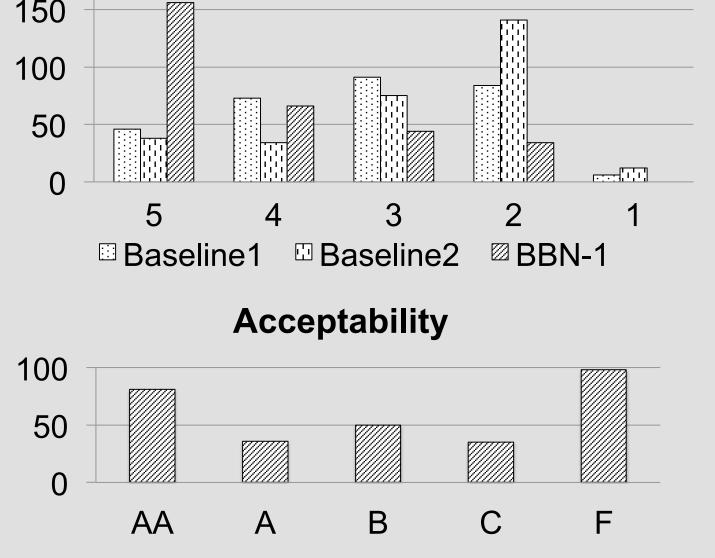
Development in NTCIR-10	BLEU
NTCIR-9 system with 45M LM	37.71
+ miscellaneous features	38.06
+ robust context dep. translation	38.72
+ recurrent neural network LM	39.35
+ translation-based true caser	40.02
NTCIR-9 system with 14B LM	39.14
+ miscellaneous features	39.51
+ document-level LM adaptation	39.94
+ sentence-level LM adaptation	40.95
+ robust context dep. translation	41.09
+ recurrent neural network LM	41.43
+ translation-based true caser	42.13

- Special token sharing in translation and language model
 - One special token for each category: numbers (e.g., 2,596), patent IDs (e.g., No.5,400,788), math expressions (e.g., p=0.004), material names (e.g., C15H23N2O5P), and labeled names (e.g., 3.05kg)
- Patent case-LM
 - Retrain the case-LM on 45M LM data
- Word segmentation lexicon
 - Re-optimize on 45M parallel corpus
- Use only 100 features of the highest weights in each category of the 50K sparse features
 - Address over-fitting due to smaller tuning set
- **Document-level CLIR-based LM adaptation**
 - Retrieve most relevant passages for a test document in the 14B LM data using CLIR
 - Bias LM for sentences in the test document to these passages

Automatic Evaluation (BLEU)			
System	IE	CE	ME
Baseline1	32.52	30.74	17.96
Baseline2	31.34	29.34	18.05
BBN-1	42.68	39.44→41.09	27.62
BBN-2	39.98	36.69→38.93	N/A

Patent Examination Evaluation

B



Adequacy

Typical example \bullet

20

10

0

- 对于每一像素,着色引擎210使用在以上等式(2)-(4)中陈述的边等式来确定所 Source: 述像素是否在三角形中。
- For each pixel, the rendering engine 210 uses the edge equation set forth in MT output: equations (2) to (4) above to determine whether the pixels in a triangle.

For each pixel, the shading engine 210 determines whether the pixel is in Reference: the triangle using the edge equations set forth in equations (2) - (4) above.