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Overview 

•  Statistical machine translation framework 
•  Building patent machine translation systems 
•  Official evaluation results 
•  Summary 
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Part I:  
Statistical Machine Translation Framework 
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Statistical Machine Translation (MT) 
Framework 
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String-to-Dependency Translation Model 

•  Modified version of Chiang’s Hiero algorithm 
•  Extract hierarchical rules with well-formed 

dependencies on the target side 
•  Well-formed dependency structure: 

•  Single rooted tree, with each child being a complete sub-tree 
•  Sequence of siblings, each being a complete sub-tree 

•  Use POS tag of head word as non-terminal labels on the 
target side 

•  Extract all phrasal rules, ignoring dependency 
•  Features: 

•  10+ core features 
•  ~50K sparse binary features 
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Part II:  
Building Patent Machine Translation Systems 
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BBN Patent MT systems - Overview 

•  Data released by the NTCIR-10 organizers 
•  Parallel data: 45M words of Chinese-English sentence pairs 
•  Extra LM data: 14B words of US patents in English 
•  Development data: 2K Chinese-English sentence pairs, split into 

tuning and test set 
•  Model training 

•  Translation Model: trained on the 45M parallel corpus 
•  Language Models: 

•  45M LM: trained on the target side of the 45M parallel corpus 
•  14B LM:  trained on the 45M words plus the 14B US patent words 

•  Summary of results on the test set (development) 
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Review of Work for BBN NTCIR-9 
•  Consistent tokenization 

•  Fixed inconsistent tokenization of 
ASCII strings in the source and target 
sides, e.g., “IS-1000” vs. “IS – 1000” 
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•  Document-level LM adaptation 
•  Find documents in monolingual 

English patent corpus that are  
similar to test document 

•  Estimate a separate LM and 
interpolate with the general LM 

System BLEU 
BBN Baseline with 45M LM 34.01 
+ consistent tokenization 34.56 
+ more token sharing 34.97 
+ patent case-LM 36.47 
+ optimized word segmenter 36.95 
+ top 100 features 37.71 
+ 14B LM 39.14 
+ document-level LM adaptation 40.04 
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Development for NTCIR-10 Evaluation 

•  Overview 
•  Miscellaneous additional features 
•  Sentence-level LM adaptation 
•  Robust context dependent translation 
•  Recurrent neural network LM 
•  Translation-based caser 
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•  Bigram lexical translation model 
•  Extension of context-based lexical probabilities to 

model joint likelihood of target bigrams given source 
context 

 
 

•  Apply chain rule and use simple back-off smoothing 
•  Similarly for the backward direction 
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System Test 
NTCIR-9 system with 45M LM 37.71 
+ miscellaneous features 38.06 
NTCIR-9 system with 14B LM 39.14 
+ miscellaneous features 39.51 
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Sentence-level LM adaptation 
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•  High order context-dependent translation models may be 
very sparse 
 
 

•  Common solution 
•  First, apply the chain rule 

 
 

•  Back-off each probability independent 

•  But, unlike LM, there is no clear back-off ordering 
•  Is                      “better” than                       ? 
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Robust Context-Dependent Modeling 
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•  Our solution: interpolate all possible back-off components 
•  Sparse context types can be added independently of one another 
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System Test 
NTCIR-9 system with 45M LM 37.71 
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Neural Net LM 

•  Trained a recurrent neural net LM for rescoring 
•  Mikolov’s toolkit: 

http://www.fit.vutbr.cz/~imikolov/rnnlm/ 
•  Interpolated with 5-gram KN Smoothing LM 
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System Test 
NTCIR-9 system with 45M LM 37.71 
+ miscellaneous features 38.06 
+ robust context dependent translation 38.72 
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+ miscellaneous features 39.51 
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+ sentence-level LM adaptation 40.95 
+ robust context dependent translation 41.09 
+ recurrent neural network LM 41.43 
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e.g., Is the target word upper cased and does it follow a period? 
Is the target word upper cased and a proper noun?  
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Official Automatic (BLEU) Results 

•  The two BBN systems 
•  BBN-1 : the primary system, trained on 45M parallel              
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•  BBN-2:  the secondary system, trained on 45M parallel     

       corpus only 
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•  Baseline2– Moses phrase-based SMT system 
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System 

Intrinsic 
evaluation 

Chronological 
evaluation 

Multilingual 
evaluation 

BBN-1 42.68 39.44        41.09 27.62 
BBN-2 39.98 36.69        38.93 N/A 
Baseline1 32.52 30.74  17.96 
Baseline2 31.34 29.34 18.05 

→
→

*        indicates the change in BLEU from NTCIR-9 evaluation to NTCIR-10 evaluation →
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Official Manual Evaluation Results 
•  Adequacy: scores from 5 (best) to 1 (worst) 

 
                                                              
                                                                       

                                           

 
                                                                            

        

 

       Average Allocation of scores 
System adequacy 5 4 3 2 1 
BBN-1 42.68 156 66 44 34 0 
Baseline1 32.52 46  73 91 84 6 
Baseline2 31.34 38 34 75 141 12 
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Official Manual Evaluation Results 
•  Adequacy: scores from 5 (best) to 1 (worst) 

 
•  Acceptability: scores in AA (best), A, B, C, and F (worst) 
•  Pairwise acceptability: percentage of wins and ties when comparing 

acceptability score with other submissions 

 
                                                                            

        

 

       Average Allocation of scores 
System adequacy 5 4 3 2 1 
BBN-1 42.68 156 66 44 34 0 
Baseline1 32.52 46  73 91 84 6 
Baseline2 31.34 38 34 75 141 12 

       Pairwise Allocation of scores 
System score AA A B C F 
BBN-1 0.69 81 36 50 35 98 
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Official Manual Evaluation Results 
•  Adequacy: scores from 5 (best) to 1 (worst) 

 
•  Acceptability: scores in AA (best), A, B, C, and F (worst) 
•  Pairwise acceptability: percentage of wins and ties when comparing 

acceptability score with other submissions 

 
•  Patent examination evaluation: scores in S (perfect), A, B, C, D, and F 

(worst) 

 

       Average Allocation of scores 
System adequacy 5 4 3 2 1 
BBN-1 42.68 156 66 44 34 0 
Baseline1 32.52 46  73 91 84 6 
Baseline2 31.34 38 34 75 141 12 

       Pairwise Allocation of scores 
System score AA A B C F 
BBN-1 0.69 81 36 50 35 98 

       Allocation of scores 
System S A B C D F 
BBN-1 6 19.5 3.5 0 0 0 



Translation Examples 
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Source: �	'��0=,2� 210�*�
�/�(2)-(4)�;7+5/�%
-��7�0#���3��� 

MT output: For each pixel, the rendering engine 210 uses the edge equation set 
forth in equations (2) to (4) above to determine whether the pixels in 
a triangle.  

Reference: For each pixel, the shading engine 210 determines whether the pixel 
is in the triangle using the edge equations set forth in equations (2) - 
(4) above. 

Source: �74"�<�7�&�$�"�)+!6��.81(+���
�:�*9� 

MT output: The above description fully describes the composition, manufacture 
and use of improved penetrable diaphragm in accordance with the 
principles of the present invention. 

Reference: The above specification provides a complete description of the 
composition, manufacture and use of the improved penetrable 
membrane in accordance with the principles of the present invention.   
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Summary 

•  It was relatively straightforward to port BBN’s MT system to work 
on patents 
•  4-5 weeks of efforts in NTCIR-9 evaluation 
•  3-4 weeks of efforts in NTCIR-10 evaluation 
•  All techniques initially developed for other domains work well on patents 

•  Special attention to patents helps 
•  Better tokenization, special token sharing, optimizing word 

segmentation 
•  Sentence-level LM adaptation 
•  Further improvement is possible by exploring special properties of 

patents 
•  Lots of potential 

•  Patents are easier to translate 
•  State-of-the-art accuracies in both automatic and manual evaluations 
•  Helpful in real patent examination and possibly other tasks 

 
�



Related MT Research at BBN 

Leading performer in DARPA’s MT programs 
 

•  Text-to-text translation (GALE, BOLT) 
•  Arabic and Chinese to English. newswire, weblogs, web forums, SMS/chat 

•  Speech-to-text translation (GALE) 
•  Arabic and Chinese to English. broadcast news and broadcast conversation 

•  Speech-to-speech translation (TransTac, BOLT) 
•  English to/from Iraqi Arabic, Farsi, Dari, Pashto, Malay, and Spanish 
•  TransTalk: portable (Android), two-way translation device; deployed by US Army 

•  Image to text translation (MADCAT) 
•  Foreign text (Arabic, Chinese and Korean) in images (through OCR) to English 

•  Multilingual broadcast/web monitoring 
•  Continuous searchable archive of international television broadcasts and web sites 
•  Automatic translation to English for deep analysis 

 Contact:  schwartz@bbn.com 
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