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ABSTRACT
The SRI team joined the subtask of Chinese-English Patent
machine translation evaluation, and submitted the trans-
lation results using a combined output from two types of
grammars supported in SRInterp [13], with two different
word segmentations. We investigated the effect of adding
sparse features, together with several optimization strate-
gies. Also,for the PatentMT domain, we carried out prelim-
inary experiments on adapting language models. Our results
showed positive improvements using these approaches.
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1. INTRODUCTION
The SRI team focused on three basic aspects of patentMT

in a less than two-week effort. First is the preprocessing of
the patent domain data, including word-segmentations and
named-entity tagging; second, we investigated the effects of
leveraging sparse features and optimizations for the evalu-
ation tasks; third, we tried language model adaptations for
the patent domain. All experiments were carried out using
our MT decoder for multiple platforms especially for mobile
devices.

There are many long words/terminology terms in the patent
data, and word segmentation is one key problem of translat-
ing the unknown word or low-frequency terminologies. Two
word segmenters are applied in our system, with minimal
adjustments of the vocabularies used for the patent data.
One is the Stanford word segmenter [10], and the other is
the Cambridge word segmenter. With the word-segmented
streams, we applied the entity tagging using the text normal-
ization toolkit Decatur [12]. The formula expressions, new

materials’ names, and technical terms in the patent data
posed great challenges in the preprocessing of the patent
data, and the word alignment quality.

Another aspect of the translation in our experiments is
to investigate the sparse features. Feature selection is used,
which is a two-step process, in our empirical experiments
to avoid overfitting, and also to ease the burden of the op-
timizations. We applied tuning as reranking approach [4],
together with an support vector machine (SVM) classifier to
tune the parameters. This margin-based classifier allows a
flexible framework for feature selection and applying priors
to the parameters estimations.

We also investigated the effects of language model (LM)
adaptation. Due to time constraints, the results did not
go into our final submission. A subset of data is retrieved
regarding the relevant translations, and a smaller domain-
specific LM is then built. It is interpolated with the big
background LM, and the weights are learned from held-out
data. Overall, we observed a small improvement using the
LM adaptation.

2. PREPROCESSING OF THE DATA
The patent data poses special preprocessing challenges

to the preprocessing process. Many times, we found that
mixed regular expressions can cut sentences in half, and
cause serious problems in our system building. Formula,
English expressions such as, “FIG”, “Fig.”, are mixed with
Chinese character streams, and short-hand representations
of the technical terms. Entity tagging tends to cause se-
rious mistakes in these cases, often breaking things apart,
the alignment suffering from non 1-to-1 mapping between
entities, and finally losing translations for them. The many
UNK words also posed significant challenges to the language
model scoring, which cannot figure out the correct probabil-
ities inside of the tagged entities.

We modified the regular expressions inside the Decatur
pipeline, to mainly accommodate cases occurring in the patent
Chinese data. Due to the nature of the word segmenters,
we need to modify the MToken inside the Decatur pipeline
to handle the broken segmentations, and try to simulate
the same processing the English-alike tokens in the Chinese
streams. In the end, the Stanford Chinese word segmenter
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Table 1: Sparse Feature Types and Examples
Feat Categories Information Examples

Lexical if the word-pair is seen in a lexicon f − e
Fertility Source word fertility f − v0, f − v1, f − v2, f − v3+
Rule type Detailed Hiero rule types F-X1-F-X2 ↔ X1-E-X2

Reorder type If the target side contains monotone or reordering
of non-terminals

WX0WX1W

Target spontaneous words Predefined English spontaneous words the, this, such, was...
Bigrams Bigrams seen in the target side of the phrases BI wang jin-ping
Frequency of rules Bined frequency if the observed rules freq1, ..., freqK

tends to generates long words, such as Chinese terminolo-
gies, resulting a large vocabulary containing 272K words.
For the Cambridge word segmenter, the resulting vocabu-
lary is much smaller at 101K words, without breaking the
long terminologies into too many small pieces like charac-
ters.

Besides the MToekns as in the Decatur pipeline for tag-
ging numbers and dates, for test data we introduced a special
token called $eng to mark the English tokens in the source
language such as “GPS”, “LED”, and company names such
as “Merck”. In the ngram queries for LM probabilities, the
decoding process will look inside of $eng’s content for com-
puting probabilities.

3. TRANSLATION ENGINE: SRINTERP
Our systems are based on the SRInterp [13], support-

ing several probabilistic synchronize context-free grammars
(PSCFG), including Hiero and string-to-dependency tree.
The decoder is chart-based, and standard CKY algorithms
are applied to derive translations from a packed forest. Sev-
eral pruning strategies are supported for speed; consensus
decoding and force decoding are also supported. Multiple
types such as randomized language model, ngrams, class-
based ngrams, and multiple mixtures including Baysian mix-
ture or log-linear mixture of different type of language mod-
els are supported in our evaluation system. Different op-
timization algorithms such as margin infused relaxed algo-
rithm (MIRA), pairwise ranking optimization (PRO) and
standard minimum error rate training were also added for
standard features and sparse features. Most of the develop-
ments are optimized for speed and memory in multi-platforms
and especially for IOS and android systems in mobile devices
based on the work in [14].

In our submission, we applied Hiero-style grammar, and
a string-to-dependency tree grammar (S2D), with a consid-
erations of their speed for short development cycles. In our
basic setup, we have about 12 dimensions of features and
one single LM. In our submitted system, we chose the sparse
feature from the setup, as described in section 4.

With these two different types of grammar, we applied
a system combination, to combine the outputs from differ-
ent grammars and word segmentations. It turns out the
two grammars are similar in terms of performance for the
development data, and we did not observe significant im-
provements over the best baseline system.

System combination uses a two-pass alignment algorithm
to generate a confusion network [1] from unique 10-best sys-
tem outputs from each of the systems, and then finds the
final outputs based on a set of features, including system ID
and number of out-of-vocabulary (OOVs) in the pass, and

a language model estimated from all n-best hypotheses on
the test sets. The feature and language model weights were
trained using minimum error rate training [6] with a simplex
search algorithm. The simplex search algorithm is the same
one as also implemented inside SRILM [9].

4. SPARSE FEATURES
Sparse features are introduced to help fixing the specific

errors in the translation output. In our system, we computed
seven categories of sparse features, as listed in Table 1. Some
of the features can be treated as dense (or core features
similar to the IBM Model-1 probabilities for rule pairs), such
as the category of frequency of the rule, but majority of them
are of sparse natures.

The lexicon features are derived from the IBM model-1,
in which we check if a word-pair f ↔ e occurs in the deriva-
tion. The fertility features check how many times a word is
aligned to 1 word, 2 words, or 3+ words. The reordering fea-
tures will only check the reordering between nonterminals,
which is basically a simple count of the reorderings in the
derivation tree; the rule type is a more detailed description
of the PSCFG rules used, and 38 types of rules are defined
in our system. Several examples together with the weights
are given in Table 2.

We start with a list of 2, 739, 369 sparse features, and run
optimizations and selections iteratively to avoid overfitting.

4.1 Optimization
We chose the tuning-as-reranking algorithm [4] for opti-

mizing the sparse features. We use the margin-based classi-
fier SVM to leverage the priors for the weights to be learned.
The weights for each feature can be used for a second step of
feature selection. The weights closer to zero, can be safely
discarded in the next iteration for optimization. Empiri-
cally, the weights learned from SVM are also more inter-
pretable than the weights learned from the maxent classi-
fier. As shown in Table 2, the optimization preferences are
illustrated by the weights learned. The positive weights are
preferred, and the negative weights indicate that the system
dislikes observations of the feature. For instance, the sys-
tem likes to see more of the English word “some”, but not
the word “was”; it likes the rule type “F-X-F-X-F->X-E-X-
E-X”, which seems to have more lexical items to bound the
nonterminals, and it likes less the rule type of “F-X-F-X-F
-> X-E-X”, which seems to have unbounded nonterminals
X in the target side. These unbounded nonterminals might
indicate that the rules were extracted from more ambiguous
word alignments, and might be less trustworthy in applying
to the derivations.

To avoid overfitting, we also try to build tuning data from
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Table 2: Features and their weights
Features Weights Features Weights Features Weights

WX0WX1W 0.1655 F-X-F-X-F->X-E-X-E 0.2022 some 0.1973
WX1WX0W 0.1559 F-X-F-X -> E-X-E-X-E 0.2312 an 0.099

X0WX1 0.0744 X-F-X -> X-E-X-E 0.4769 such -0.0514
X1X0W -0.0735 F-X-F-X-F -> X-E-X -0.0618 was -0.0554

Table 3: Experiments on Feature Selection
Setup BLEU

Baseline 31.4
all sparse features 30.4
300 sparse features 31.6

updated optimization 32.8

various sources to have a representative tuning set, a held-
out small test set to double check the results, and reduce
the risks of overfitting.

4.2 Feature Selection
Overfitting is not always avoidable for tuning sparse fea-

tures. Besides building relevant tuning set, we carried out
two simple feature selection strategies. First, we start from
the full list of the sparse features, which are around 2.7 mil-
lion, and use PRO with SVM to tune all the parameters
toward BLEU. All the features receiving a weight close to
zero will then be removed from the list, and the remain-
ing features will be used for the next optimization iteration.
Iteratively, we keep only the remaining top 300 weighted
features, which are spread among all the seven categories.
In this process, the top 300 weighted features are selected
from the optimization process together with the baseline ba-
sic dense features; we further optimize the selected sparse
features alone by fixing the weights learned for the dense
features. This seems to be beneficial and more stable for
the unseen testset, as shown in Table 3.

5. EXPERIMENTS
In our experiments, we mainly use lower-cased BLEU [7]

for tuning and testing; in our final submission, a truecaser
that is also trained for the patent domain is applied to the
final output. All scores reported are lower-cased scores ex-
cept those mentioned explicitly for mix-cased cases. Our
development data contains 2000 sentences, and the test set
contains 2000 sentences. We further split the test set into
two smaller parts to have one development set and one un-
seen set for system combinations and LM adaptation exper-
iments. The training, test conditions, and our final results
are listed in the evaluation overview paper [3]. As the mono-
lingual English data has a size of almost 14 billion running
tokens, a 7-gram LM is learned, and then shrunk using a
bloom-filter LM (BFLM); the final LM has a size of 6.2 GB
on the disk for our final evaluation systems. As this BFLM
is still large, we also trained an LM from the 45M words
of the parallel data, and use the smaller LM for tuning pa-
rameters of our MT engine. The large LM is used for our
final system submissions and unseen test sets for verifying
the setups, with the borrowed parameters from the smaller
LM setups.

To speed up the decoding, we applied the pruning of

Table 4: Data
Word Segmenter Chinese Tokens English Tokens

Stanford 38,335,422 44, 289,651
Cambridge 41,151,267 44, 289,651

Table 5: Comparision between different word seg-
menters and grammars

Word Segmenter Hiero Str-to-DepTree

Stanford 33.3 32.1
Cambridge 33.6 32.4

the grammars similar to the work in [11], including a pre-
weighting and ranking of the grammar rules using a language
model, in all of our experimental setups. We cache language
model ngram queries in a trie, and we also look inside of
the content of the English entities ($eng{}) for LM scoring
during the decoding process. We lower cased the contents
to match the LM training condition.

5.1 Data
We used all of the one million parallel training sentences,

and applied two pipelines of preprocessing using Stanford
word segmenter 1 and the Cambridge word segmenter from
our BOLT project.

The Stanford word segmenter tends to glue pieces (char-
acters) into long words. The Cambridge one, which is HMM
based, usually breaks long words into shorter ones. As
shown in Table 4, using Stanford word segmenter, the num-
ber of tokens is quite far from the number of tokens in En-
glish, indicating that there could be a systematic gap to
fill in for the alignment models. On the other hand, the
Cambridge word segmenter seems to generate a reasonable
number of tokens, and is close to the number of tokens in the
target side. Both word segmenters are integrated into our
preprocessing pipeline, and MTokens (defined in Decatur),
such as $num and $eng are then marked in xml format in
the input streams.

For two different word segmentations, we run the transla-
tion evaluations on our test set. in Table 5, we can see that
the two word segmenters, however, did not differ much in the
final translation qualities, even though they are more differ-
ent in terms of the vocabulary sizes and the gap between
the number of tokens in the parallel training data.

5.2 Setups
We built two sets of PSCFG grammars for our evaluation

submission: the standard Hiero grammar [2], and the string-
to-dependency tree grammar [8]. As shown in Table 5, the
standard Hiero grammar is about 1 BLEU point better than
the string-to-dependency tree grammar (S2D), using exper-

1http://nlp.stanford.edu/software/segmenter.shtml
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Table 6: SVM v.s. MEGAM maxent classifier.

λ SVM MEGAM

0.05 35.6 35.3
0.075 35.6 35.6
0.10 35.6 35.1
0.20 35.5 35.6
0.30 35.1 34.5
0.40 34.2 33.9

Table 7: BFLM v.s. Ngram for final setups
LM SIZE Dev Test

BFLM 6G 49.6 34.4
Ngram 44G 58.1 35.6

imental setups with the only difference of grammar types.
A closer check showed that the translation output from the
S2D is always shorter than the Hiero output in general for
patent data, and more deletions of the content words. We
suspect that the dependency trees we collected for patent
data might favor shorter and shallow structures, and the
qualities of the dependency trees might need to be improved
further for the patent domain. The S2D systems have much
smaller grammar table than the Hiero grammar, and better
decoding speed.

On top of these two grammars, we compute the same set
of sparse features and add them to the two baseline gram-
mars. For optimizing the weights for the sparse features, we
tried several strategies to reduce overfitting. PRO is a flexi-
ble framework, allowing many possible classifiers. SVM was
chosen in our optimization process of PRO. It turns out the
weights we learned via SVM is more interpretable, are more
informative for feature selection steps using their L1 norm.
In PRO setup, we need to interpolate new weights ~wi with
the previous iteration one ~wi−1: ~w′i = λ∗ ~wi + (1−λ)∗ ~wi−1

to stabilize the optimization process. In our experiments, we
found the optimization results are sensitive to this interpola-
tion weight. This is especially true for the maxent classifier
implemented megam 2 . As shown in Table 6, a simple grid
search of the interpolation factor was carried out for the two
classifiers. The differences may not be statistically different,
but weights learned from SVM seem to be relatively more
stable for unseen test set wrt to variations in interpolation
factors. This is perhaps because svm’s nature is to optimize
for margins. We chose a small weight of 0.10 from our em-
pirical experiments. We used SVMperf [5] implemented in
3, with a regularization of L1 norm, and a bias feature in
learning a linear classifier toward 0/1 loss. We used default
parameters for megam, and turn on the switch of “-fvals” for
real valued sparse features.

The sampling process in PRO does not seem to matter
much in our empirical optimization experiments. The dif-
ferences of classifiers are, however, larger. This may impact
the down-stream feature selections more in the optimization
process.

Our decoder support different types of LMs, in memory-
mapped images. In this evaluation, our bloom-filter lan-
guage model (BFLM) [14] is a heavily-pruned model, with a

2http://www.umiacs.umd.edu/∼hal/megam/
3http://www.cs.cornell.edu/People/tj/svm light

Table 8: System combination over different word
segmenters and grammars

Setups BLEU

Baseline 34.4
Syscomb 34.6

Table 9: Language Model Adaptation Results in
terms of BLEU and TER We observed better TER
improvements than BLEU over the baseline using
two adaptation strategies.

Setups Tune Test

Baseline 33.27/50.37 32.18/51.46
TGT-adapt-redecode 33.75/49.84 32.42/50.94

SRC-adapt-1passdecode 33.88/49.62 32.54/50.67

model size of 6GB on the disk; non-pruned version has a size
of 44GB on the disk; both are 7-grams in memory-mapped
formats. The BFLM LM setup decodes almost 3 words per
second, while the non-pruned ngram decodes 1.04 words per
second on average. We chose the BFLM in our evaluation
setup mainly for practical speed and memory concerns in
our experimental cycles; the loss on the test sets, however,
is 1.2 points on BLEU as shown in Table 7.

5.3 System Combination
Due to the nature of the similar preprocessing pipelines

and translation models, our system combination, even though
it is based on multiple segmentation and grammars, gains
only a small margin over our best single system, which is a
Hiero grammar using the Cambridge word segmenter. Also
the four single systems are essentially too similar to each
other in allowing enough varieties to bring better perfor-
mance to the final system combinations. We got 0.2 im-
provements on BLEU for our unseen test set in the final
submissions as shown in Table 8.

5.4 Language Model Adaptation
As patent data is domain specific, we tried to integrate

language model adaptation into our pipeline, to further boost
performance. For this experiment, we used slightly different
tuning and test sets. Table 9 showed the improvements on
top of our best baseline single engine, with the Cambridge
word segmenter, but using a small language model trained
with 45M words. We split the 2000 sentences development
data into a 1000-sentence tune-set and 1000-sentence test
set. We investigated two approaches for language model
adaptation.

SRC-adapt-1passdecode: use the source sentences in one
document to retrieve the indexed source side of parallel text,
train 7-gram adapted LM using corresponding target side
sentences for each test document, and linearly interpolate
with the 7-gram background LM (i.e., decoding LM trained
on the parallel text) and run 1pass decoding.

TGT-adapt-1passdecode: run 1pass decoding with back-
ground LM, use the translation hyps in one document to re-
trieve the indexed target-side sentences, train 7-gram adapted
LM for each document and linearly interpolate with the 7-
gram background LM, and re-decode.

For tuning the parameters, we keep the same LM weight,
and tune on the tune set the threshold of retrieved data,
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Table 10: Final System Performances on Dev and
Test data

Setups Dev Test

Dense Features 30.1 31.9
Sparse Features 37.1 31.7

feature selection-1 35.3 32.4
feature selection-2 35.3 32.7

and the interpolation weight between adapted LM and back-
ground LM. We observed better TER score improvement
than BLEU scores. Due to time constraints, the results did
not go into our final submissions.

5.5 Results
We carried out two feature selections on building our fi-

nal systems. The first one is to select the top 300 weighted
features. The second one is to slightly relax the feature elim-
inations in the optimization process, and try to optimize the
sparse features separately by fixing the weights of the dense
features; This allows us to use a slightly larger feature set,
which contains about 923 features. In the final submissions,
we used the second feature selection for single engines, which
seems to perform slightly better than the first one on a held-
out unseen test set as shown in Table 10.

Overall, on this unseen testset, we did not observe the
significant improvements we obtained on the development
set. The feature selections based on the development set
might be still be too specific for the tuning/development sets
to avoid the overfitting in general cases. By constructing a
relevant tuning and development set, we might get better
improvements by using sparse features.

6. DISCUSSIONS AND CONCLUSIONS
Preprocessing is one of the hurdles in our evaluation sys-

tem, and we observed serious consequences in the final trans-
lation outputs due to mis-recognized, broken, and even dropped
MTokens. For instance, patent documents tend to contain
many long formula; however, they were mostly broken in our
translations, due to improper normalization and the errors
from MToken recognition.

Another more serious problem was the heavily pruned lan-
guage model used in our system. In the Patent domain, as
our experiments showed after eval, the less-pruned LM can
easily improve 1.2+ BLEU point over the systems we sub-
mitted. Optimizations on using large LM may give even
larger improvements. We also plan to investigate also lan-
guage model adaptations, structured and class-based lan-
guage models, to leverage the document context for patent
domain.

Feature selection is another big issue in our development.
Overfitting is observed in our tuning and development sets.
Besides the variations from difference classifiers of SVM and
megam for influencing the downstream feature selections,
the strategies are also important for inducing a robust subset
of the features. It maybe better to separate the optimiza-
tion scheme for core features and sparse features, as they
have very different observation nature in the training data.
We are conservative in adjusting the weights in optimiza-
tions, and feature selection is done in an iterative selection-
optimization process. This empirical process cannot guar-
antee a converged set of features. We are aiming at a better

feature selection algorithm may identify the relevant set of
features and ease the overfitting risks.
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