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ABSTRACT
We describe the statistical machine translation (SMT) sys-
tems developed at Heidelberg University for the Chinese-to-
English and Japanese-to-English PatentMT subtasks at the
NTCIR10 workshop. The core system used in both subtasks
is a combination of hierarchical phrase-based translation
and discriminative training using either large feature sets
and `1/`2 regularization (for Japanese-to-English) or vari-
ants of soft syntactic constraints (for Chinese-to-English).
Our goal is to address the twofold nature of patents by
exploiting the repetitive nature of patents through feature
sharing in a multi-task learning setup (used in the Japanese-
to-English translation subtask), and by countersteering com-
plex word order differences with syntactic features (used in
the Chinese-to-English translation subtask).

Categories and Subject Descriptors
I.2.7. [Natural Language Processing]: Machine transla-
tion

General Terms
Algorithms, Performance, Experimentation

Keywords
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Chinese-to-English PatentMT,
Japanese-to-English PatentMT

1. INTRODUCTION
We describe our statistical machine translation systems

for the Chinese-to-English and Japanese-to-English patent

translation subtasks at NTCIR10. The core system used in
both subtasks is a combination of hierarchical phrase-based
translation [2] and discriminative training, either using our
own pairwise ranking method with feature selection [19], or
a MERT implementation [15, 10].

Our software for discriminative training (dtrain) is freely
available as a part of the cdec research platform1 [4].

We restricted our systems to a constrained data situation
where only the parallel corpus provided by the organizers
was used for training both translation and language models.
If we compare our system to other constrained data submis-
sions, i.e. systems that did not use additional monolingual
resources for language modeling or additional external re-
sources such as dictionaries or post-editing, our best system
ranked 3rd with regard to BLEU [16] on the Intrinsic Eval-
uation test set (IE) for the Chinese-to-English translation
subtask and 2nd for the Japanese-to-English translation sub-
task also on this subtask’s IE test set.

The general idea of our approach is to exploit the janiform
nature of patent data: on the one hand the repetitive, for-
mulaic side of patents eases translation; on the other hand
long sentences and an unusual jargon complicate translation.

Our key idea for exploiting the repetitive nature of patents
is to approach it as a multi-task learning problem. Start-
ing from a partition of parallel training data into shards,
viewed as tasks, we apply `1/`2 regularization [19] in dis-
criminative training to achieve small sets of features that are
useful across tasks, thus yielding a small model that coun-
tersteers overfitting. This approach is used in our Japanese-
to-English system.

For the Chinese-to-English subtask we focus on handling
the complexity of patent jargon that emphasizes word or-
dering differences between Chinese and English in long sen-
tences. Since long-distance reordering phenomena cannot be
modeled well if lexical phrases are short and if non-lexical
items in hierarchical phrases do not carry linguistic informa-
tion, we incorporate soft syntactic features into our models
to prevent reordering errors [13, 20, 1].

1https://github.com/redpony/cdec/tree/master/
training/dtrain



(1) X → X1 要件 の X2 | X2 of X1 requirements
(2) X → この とき 、 X1 は | this time , the X1 is
(3) X → テキスト メモリ 41 に X1 | X1 in the text memory 41

Figure 1: SCFG rules for translation.

2. STATISTICAL MACHINE TRANSLATION
FRAMEWORK

2.1 Hierarchical Phrase-Based Translation
Our SMT framework is hierarchical phrase-based trans-

lation [2] using the cdec decoder. Translation rules are ex-
tracted from word aligned parallel sentences and can be seen
as productions of a synchronous CFG. Examples are rules
like (1)-(3) shown for Japanese-to-English translation in Fig-
ure 1. SCFG grammars were induced from symmetrized
word alignments2 using the method described by [11]. The
grammar rules necessary to translate each individual sen-
tence are extracted into separate files (so-called per-sentence
grammars).

2.2 Discriminative Training with Large Fea-
ture Sets

Discriminative training in SMT has the advantage of being
able to handle models with arbitrary types and numbers
of features, including dense or sparse lexicalized features,
defined locally or globally, as well as overlapping features.

Our system makes use of three types of features: Firstly,
we incorporate 12 dense features from the default cdec im-
plementation into discriminative training.

Furthermore, we use sparse lexicalized features, that are
defined locally on SCFG rules. We use three rule templates:

Rule identifiers: These features identify each rule by a
unique identifier. Such features correspond to the rela-
tive frequencies of rewrites rules used in standard mod-
els.

Rule n-grams: These features identify n-grams in source
and target side of a rule, which allows the model to
prefer rules that include certain n-grams. We use bi-
grams on source- and target-side.

Rule shape: For these features, we defined patterns, which
identify the location of sequences of terminal symbols
in relation to non-terminal symbols, on both the source
and target side of each rule used. These features ab-
stract away from the lexical items at terminal nodes.
For example, rule (1) in figure 1 maps to the pattern
(NT, term*, NT ) on the source side, and (NT, term*,
NT, term*) on the target side. Rule (2) maps to a dif-
ferent template, that of (term*, NT, term*) on source
and target sides.

Finally, we define non-local features that encode soft syn-
tactic constraints. We tried different variations of this idea,
following [13], [20] and [1]. We found source-side soft syntac-
tic constraints that reward rules with source spans matching

2Symmetrized word alignments were generated using
GIZA++ on lowercased data in both directions and apply-
ing the grow-diag-final-and heuristic.

baseline XP2 IP2 VP2 NP
ss=15,pl=30 ss=15,pl=30 ss=15,pl=30

dev 34.06 (36.37) 34.84 (37.19) 34.57 (36.85)

test 32.35 (34.03) 33.06 (34.83) 32.75 (34.49)

Table 1: Soft syntactic constraints system evaluation
results (%BLEU): ss indicates the span size and pl
indicates the pop limit used by the decoder. The re-
sults are given for the recased and detokenized out-
put, the result for the lowercased and tokenized out-
put is given in brackets. Statistically significant re-
sult differences to the baseline are indicated in bold
face.

syntactic constituents and penalize rules with crossing con-
stituents to work best. More details on this can be found in
the description of our Chinese-to-English system.

The discriminative learning framework used in our system
is a perceptron algorithm for pairwise ranking [18, 22, 8]. A
key extension to this framework is our method for feature
sharing that is described below.

2.3 Feature Sharing via `1/`2 Regularization
The goal of our method for feature sharing is to increase

efficiency of learning and to provide a measure against over-
fitting. The key idea is to view data partitions (shards) as
tasks and to apply methods for joint feature selection from
multi-task learning to achieve small sets of features that are
useful across all tasks or shards. Our algorithm represents
weights in a Z-by-D matrix

W = [wz1 | . . . |wzZ ]T

of stacked D-dimensional weight vectors across Z shards.
We compute the `2 norm of the weights in each feature col-
umn, sort features by this value, and keep K features in the
model. This feature selection procedure is carried out after
each epoch. Reduced weight vectors are mixed and the re-
sulting average vector of dimensionality K is then used to
initialize another epoch of parallel training on each shard.

This algorithm can be seen as an instance of `1/`2 reg-
ularization as follows: Let wd be the dth column vector
of W, representing the weights for the dth feature across
tasks/shards. `1/`2 regularization penalizes weights W by
the weighted `1/`2 norm

λ||W||1,2 = λ

D∑
d=1

||wd||2.

Each `2 norm of a weight column represents the relevance
of the corresponding feature across tasks/shards. The `1
sum of the `2 norms enforces a selection of features based
on these norms.

For a more formal description of the algorithm and experi-
mental comparison with related work on distributed stochas-
tic learning see [19].

3. CHINESE-TO-ENGLISH PATENT MT

3.1 System Setup
The training data used in our experiments consists of one

million sentence pairs provided for the NTCIR10 PatentMT



baseline parsematch sparse
ss=15,pl=30 ss=15,pl=30 ss=15,pl=30

dev 34.06 (36.37) 34.07 (36.40) 34.56 (36.81)

test 32.35 (34.03) 32.44 (34.17) 31.79 (33.50)

Table 2: Parsematch and sparse syntax features
evaluation (%BLEU): ss indicates the span size and
pl indicates the pop limit used by the decoder. The
results are given for the recased and detokenized
output, the result for the lowercased and tokenized
output is given in brackets. Statistically significant
result differences to the baseline are indicated in
bold face.

task (same data as used in NTCIR9). The development
(dev) and test set (Chronological Evaluation/ChE test set
of NTCIR10) each consist of 2,000 sentences taken from the
NTCIR9 PatentMT task data. The organizers of the NT-
CIR PatentMT task manually ensured that the test set did
not contain sentence patterns with a close similarity to the
training set (see [7]). This considerably reduces the redun-
dancy aspect compared to standard patent collections.

We did not use any other resources, neither additional
monolingual data nor external dictionaries nor human post-
editing. Hence we call our approach“constrained data patent
MT”.

The Chinese data was word segmented and tokenized us-
ing the Stanford Segmenter toolkit3.

For the experiments using soft syntactic constraints, syn-
tactical parses were obtained for development and test set
using the Stanford Parser for Chinese4.

Tokenization of the English side of the data, detokeniza-
tion of the final output and recasing were carried out using
unmodified Moses tools. The recaser was trained on the
truecased side of the provided parallel data.

3.2 Soft Syntactic Constraints
We experimented with three different kinds of soft syntac-

tic constraints. The setup that worked best in our experi-
ments is a re-implementation of the ideas presented in [13].
These source-side soft syntactic constraints enable the sys-
tem to learn whether rule non-terminal spans should prefer-
ably conform with all or just certain syntactic constituents
(noun phrases, verb phrases etc.) in the source sentence, or
whether they can cross them. These preferences are learnt
on the development corpus and encoded as feature weights.
Weights can be either tuned independently or be tied to each
other. In the first case separate weights are tuned for two
features, one indicating matching, the other indicating cross-
ing. In the second case, one feature is used where the model
score is incremented by the weight of the matching feature
and decremented by the weight of the crossing feature.

Experimental results for soft syntactic constraints on the
10 most common phrase types with independently tuned
weights (short: XP2) are shown in table 1. Using the fol-
lowing 10 phrase types

{ADJP,ADV P,CP,DNP, IP, LCP,NP, PP,QP, V P}× {=,+}

3http://nlp.stanford.edu/software/segmenter.shtml
4http://nlp.stanford.edu/software/lex-parser.shtml

and indicators for matching (=) and crossing (+), 20 fea-
tures are added to the standard 12 dense features. Table 1
also shows the results for a system with soft syntactic con-
straints on simple clauses (IP) and verb phrases (VP) with
independently tuned weights and noun phrases with tied
weights (short: IP2 VP2 NP ). This system adds 5 features
to the standard 12 dense features. Weights of all systems
using this type of features were tuned using MERT. The sys-
tem with XP2 soft syntactic constraints scores 0.78 BLEU
points (test : 0.71) better than the baseline system when
translating with standard cube pruning [2] pop limit and
span size limit. The IP2 VP2 NP soft syntactic constraints
show an improvement of 0.51 BLEU points (test: 0.4) over
the baseline under standard settings. The improvements in
BLEU for both systems is significant with a p-value < 0.01
(using approximate randomization for assessing statistical
significance of result differences [14, 17]).

Further experiments were done using “parsematch” fea-
tures as presented by [20] and “sparse syntactic features” as
described by [1]. In the first case, a hypothesis score is com-
puted, which reflects how closely the decoder’s parse trees
for source and target sentence resemble linguistic parse trees.
This score is computed online (during decoding) for each
rule, considering only the source parse tree of the currently
decoded source sentence. A hierarchical phrase is defined to
be linguistically consistent if

• it corresponds to the “yield of a node” in the corre-
sponding parse tree, meaning that it represents a syn-
tactical constituent according to the syntactic parse of
the sentence and

• the subphrases filling its gaps are also linguistically
consistent.

Many phrases in the grammar do not exactly match the yield
of a node in the parse tree, but come close to it by just lack-
ing a few words. To differentiate between phrases lacking
only one word and phrases lacking many words, a quantity
is introduced which records the distance to the closest syn-
tactic label. This quantity corresponds to the number of
words that have to be added or deleted so that the result-
ing phrase corresponds to a syntactic constituent. For more
details, see [20]. The “parsematch” system adds 1 feature to
the standard 12 dense features. The weights of this system
were also trained using MERT.

“Sparse syntactic features” as described in [1] encode

• the constituent spanning the rule’s source side in the
syntax tree (if any),

• constituents spanning any variable in the rule,

• the rule’s target side surface form.

As implied by the naming, these features are sparse and pro-
duce large feature sets due to the inclusion of the target side
surface forms. Similar to [1], we reduce the number of fea-
tures by a count cutoff on the training set. For this purpose,
an additional sample of 20,000 sentences from the training
set was parsed. The sample sentences were translated with
cdec and all features triggered more than five times were
written into a whitelist. This whitelist yields 832,952 fea-
tures. In the tuning and testing step, all sparse syntactic
features apart from the ones on the whitelist were ignored.



Tuning was done using the pairwise-ranking perceptron al-
gorithm (dtrain).

Table 2 shows an experimental comparison of“parsematch”
and“sparse syntactic features”against the baseline. Whereas
the former feature did not yield statistically significant im-
provements over the baseline, in the latter case a severe
overtraining effect is visible. That is, the large number of
sparse syntactic features yields significant improvements on
the dev set, but also a significant deterioration on the test
set. We conjecture that the simple count-based feature se-
lection method used is responsible for this result.

3.3 Experimental Results at NTCIR10
We restricted our systems to a constrained data situation

where only the parallel corpus provided by the organizers
was used for training both translation and language models.
In comparison to other constrained data submissions, our
system ranked 3rd with respect to BLEU for the Chinese-
to-English translation subtask (Intrinsic Evaluation/IE test
set). Table 3 shows BLEU scores for our system compared to
three baselines. Our system, called HDU-1, adds 20 source-
side soft syntactic constraints (XP2 as described above) to
the hierarchical phrase-based system. Model selection be-
tween the XP2 and IP2 VP2 NP configuration was done
based on BLEU scores on the dev set. The final system
was run in with a wide span size of 100 and pop limit 500.
A manual evaluation done on the development data before
submission showed a clear advantage of HDU-1 over alterna-
tive submissions in terms of fluency, which led us to submit
system HDU-1 with priority 1. This decision was confirmed
by the manual evaluation done at NTCIR10 where HDU-
1 ranked 4th in terms of adequacy and acceptability. Our
second submission (HDU-2) does not use soft syntactic fea-
tures, but uses sparse rule features discriminatively trained
on the development set as described in section 2.2. HDU-2
has a small advantage in terms of BLEU, however, figure
2 confirms the advantage of the system with soft syntactic
constraints.

The baseline systems BASELINE-1 and BASELINE-2 de-
note the Moses hierarchical phrase-based MT system and
the Moses phrase-based MT system, respectively. System
ONLINE-1 denotes the Google online translation system.
Our systems score better than all baselines.

For full listings of results for all subtasks and evaluations
see [6].

4. JAPANESE-TO-ENGLISH PATENT MT

4.1 System Setup
As for the Chinese-to-English subtask we only built con-

strained systems, limiting our translation and language mod-
els to the three million parallel sentences provided by the or-
ganizers (same data as used in NTCIR8 and 9). For the lan-
guage model of this system, we experimented with a range
of orders and found that the score did not improve for orders
n > 5.

For parameter tuning and development testing we used
the provided NTCIR7 development sets (from here on dev1,
dev2, dev3 ) and the NTCIR8 development set (from here on
devtest). MERT runs were repeated several times to over-
come optimizer instability [3] (reported scores are the av-
eraged scores). Our discriminative training method dtrain

is stable in this respect with no need of repetition of ex-

system BLEU

HDU-2 35.39
HDU-1 35.21
ONLINE-1 33.88
BASELINE-1 32.52
BASELINE-2 31.34

Table 3: Experimental results at NTCIR10 Chinese-
to-English subtask (%BLEU on Intrinsic Evaluation
test set): HDU-1 adds 20 source-side soft syntac-
tic constraints to a discriminatively trained hierar-
chical phrase-based system with 12 dense features.
HDU-2 uses sparse rule features and discriminative
training. Our systems improve over Google’s online
translation system (ONLINE-1), the Moses hierar-
chical phrase-based MT system (BASELINE-1), and
the Moses phrase-based MT system (BASELINE-2).
Compared to all systems using a constrained data
setup, our system ranks 3rd.

periments. When using dtrain in the non-multi-task setup
(tuning on the single dev sets separately), we averaged the
weight vectors of 15 epochs for better generalization. The
multi-task setup (as described in section 2.3) was run for 10
(development on dev1-3 ) and 5 (final run with dev1-3 and
devtest, split into two parts to match the size of dev1-3 )
epochs.

4.2 Preprocessing
The MeCab5 toolkit was used for segmentation of Japanese

text. We applied modifications to improve over-segmentation
of ASCII-strings and under-segmentation of katakana terms:
Due to their technical nature, the patent texts contained a
large number of non-Japanese expressions, such as abbrevia-
tions, patent ids or English terms. We noticed that, since the
non-Japanese-characters in the provided data were in Full-
width Latin, MeCab tended to heavily over-segment them at
each character position, leading to faulty alignments. There-
fore, we converted all Fullwidth Latin characters to ASCII
format before running the segmenter. Even with this for-
mat, tokenization of ASCII strings occurring in English and
Japanese sentences was sometimes inconsistent. To avoid
this problem for training, we followed [12]’s approach for
Chinese segmentation and tried to apply one consistent tok-
enization to ASCII-strings in the Japanese training data and
to their English counterparts. For the parallel training data,
we used regular expressions to align ASCII-strings between
Japanese and English and then replaced strings in Japanese
with their English counterparts. For the Japanese test data,
we always used the tokenization which had been seen most
often in the training data.

We follow [5] who applied a modified version of the com-
pound splitter described in [9] to katakana terms, which are
often a transliteration of English compound words. As these
are usually not split by MeCab, they can cause a large num-
ber of out-of-vocabulary terms. On the devtest set, this
reduced the number of OOV terms from 98 to 34. Table 4
shows the effects of modifying the segmentation.

For the English side of the training data, we applied a

5https://code.google.com/p/mecab/



rule features [...] describing the present invention, it will be appreciated by those skilled in the art, there may also be numerous other
combinations and permutations of the present invention.

soft syntax [...] describing the present invention, but one of ordinary skill in the art will recognize that numerous other combinations
and permutations of the present invention are also possible.

reference [...] describing the subject invention, but one of ordinary skill in the art may recognize that many further combinations
and permutations of the invention are possible.

Figure 2: Example for Chinese-to-English subtask comparing a system utilizing local rule features (HDU-2)
with a system that uses non-local soft syntactic constraints (HDU-1), taken from the chronological evaluation
test set. System HDU-2 fails to produce a coherent sentence, outputting a list of subordinate clauses.
Whereas system HDU-1 produces a fluid sentence closely resembling the reference, which also results in a
higher n-gram precision compared to the ouput of system HDU-2.

Baseline In addition, リヤバンパービーム 111 is inclined in the direction of the arrow, and load is applied to リヤバ
ンパービーム 111.

with katakana splitting In addition, the rear bumper beam 111 is inclined in the direction of the arrow and load applied to the
rear bumper beam 111 escapes.

reference In addition, if the rear bumper beam 111 inclines in the arrow direction, the load acting on the rear bumper
beam 111 will escape.

Table 4: Example illustrating the effect of splitting katakana transliterations of English compounds.

dev set
IPC class dev1 dev2 dev3 devtest

A 1.53 3.45 2.67 1.0
B 8.09 11.33 7.23 11.95
C 1.53 0.97 1.22 1.0
D 0.11 0.22 0.33 1.2
E 0.66 0.11 1.0 0.1
F 5.9 7.66 5.45 11.95
G 47.65 43.04 46.27 30.35
H 34.54 33.23 35.82 42.45

Table 5: IPC class distribution of segments in dev
sets given in percentages. Each segment was as-
signed to the main classification of its originating
patent.

modified version of the tokenizer included in the Moses scripts.
This tokenizer relies on a list of non-breaking prefixes which
mark expressions that are usually followed by a “.”. We cus-
tomized the list of prefixes by adding some abbreviations
like “Chem”, “FIG” or “Pat”, which are specific to patent
documents. The system output was detokenized and re-
cased using the Moses tools. The recaser was trained on the
truecased English side of the training data.

4.3 Tuning
Development of tuning and pre-processing was done sepa-

rately, experiments reported in table 6 are without the pre-
processing described in the previous subsection, except the
segmentation of Japanese and tokenization of English. Tun-
ing was carried out using a cube pruning pop limit of 200
and a maximum non-terminal span size of 15, as we found
that higher settings were prohibitively slow for tuning and
only lead marginally better results. For decoding of the test
set we used a pop limit of 500 and a maximal span size of
100 to consider as much as possible of the search space of
the decoder.

Results of the development phase are depicted in table 6.
The choice of the optimizer does not seem to make a dif-
ference for tuning the dense feature weights, both methods
yield about the same score on devtest. Adding the set of
rule features to dtrain tuning results in a gain of 1 BLEU
point when using dev1 or dev3. Tuning on dev1 produced a
model of 12 dense plus 249,756 additional features – MERT
is not capable of learning models of this size. Using MERT,
all dev sets behave similar. Larger models are more prone to
overfitting and thus more sensitive to domain shifts. We ob-
serve this when tuning with on each dev set separately: The
gain using dev2 and the extended feature set is about 0.5
BLEU points below the other sets. This may be an effect of
differing IPC class distributions between dev1-3 and devtest,
for a detailed listing see table 5. [21] showed that there are
considerable differences between these classes and that ma-
chine translation models tuned on the same class are always
preferable over models that were built using mixed data (in
terms of IPC class) when translating data of a specific IPC
class. We assume that this also extends to IPC class dis-
tributions within models. We counter this effect with com-
bination of all available development sets for tuning. This
leads to further, but small improvements on devtest. We
reached about the same result using our multi-task tuning
method , taking each dev set as a separate task. This could
be done in considerably less time as all the separate tasks
(dev sets) could be tuned in parallel with minimal overhead,
and a weight vector dimensionality of K = 100, 000 allowed
us to start each epoch with a reasonably sized model.

4.4 Experimental Results at NTCIR10
For translation of the final test sets we combined the pre-

processing and tuning development efforts in a single sys-
tem, used for all test sets: consistent ASCII-tokenization,
compound-splitting with dtrain multi-task tuning. We added
the former devtest set (split into two parts) for tuning. This
system is HDU-1 in table 7. HDU-2 is the identical system,
but tuning stopped early after 3 epochs. Table 7 gives re-
sults for the intrinsic evaluation (IE test set). Both of our



tuning set
tuning method dev1 dev2 dev3 dev1,2,3

baseline 27.85 27.63 27.6 27.76
dtrain dense 27.83 – – –
dtrain rules 28.84 28.08 28.71 29.03
dtrain multi-task – – – 28.92

Table 6: Development tuning results (without any
pre-processing besides tokenization/segmentation).
The baseline is the averaged score of several MERT
runs using the standard 12 features. Results in bold
font are significant improvements over baseline with
a p-value < 0.01.

system BLEU

HDU-2 32.07
HDU-1 31.92
BASELINE-2 28.86
BASELINE-1 28.56
ONLINE-1 24.24

Table 7: Experimental results at NTCIR10
Japanese-to-English subtask (%BLEU on Intrinsic
Evaluation test set): HDU-1 and HDU-2 are an
identical system, HDU-2 stopped early in the tuning
phase. Our system improves over both baselines (for
a description see table 3. Compared to all systems
using a constrained data setup, our system ranks
2nd (HDU-2).

systems are nearly indistinguishable and ranked 2nd and 3rd
comparing the all constrained systems. For full listings of
results for all subtasks and evaluations see [6].

5. DISCUSSION
We presented the SMT systems used for Chinese-to-English

and Japanese-to-English PatentMT at NTCIR10 by Heidel-
berg University. The core system is a hierarchical phrase-
based SMT system, using discriminative training for large
feature sets under `1/`2 regularization [19]. The system is
part of the cdec research platform [4]. The key idea of our
approach was to address the janiform nature of patents by
deploying the repetitive nature of patents through feature
sharing in a multi-task learning setup (used in Japanese-
to-English subtask), and by countersteering complex word
order differences by syntactic features (used in Chinese-to-
English subtask). Our systems were restricted to a con-
strained data setup where only the provided bilingual data
were used for training system modules. A comparison in this
constrained data setup ranks our systems 3rd with respect
to BLEU for Chinese-to-English and 2nd for Japanese-to-
English Patent MT on the test sets for intrinsic evaluation.
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