Patents are easy to translate

They contain lots of repetitive and formulaic text ⇒ train a model of **sparse lexicalized features** on a large data set using **multi-task learning**; incorporate \(\ell_1 / \ell_2 \) regularization to find most important features

<table>
<thead>
<tr>
<th>Feature selection</th>
<th>dev1</th>
<th>dev2</th>
<th>dev3</th>
<th>dev1,2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.76</td>
<td>28.71</td>
<td>–</td>
<td>–</td>
<td>28.92</td>
</tr>
</tbody>
</table>

Rule identifiers: unique rule identifier

- **Rule n-grams**: bigrams in source and target side of a rule, e.g., of \(X_1, X_1 \) requirements
- **Rule shape**: 39 patterns identifying location of sequences of terminal and non-terminal symbols, e.g., (for rule (1))
 - \(NT, term* \), \(NT \), \(NT, term* \), \(NT \)

Feature selection

- \(X \to \text{ 光線のとき, } X_1 \): this time, the \(X_1 \) is
- \(X \to \) テキスト メモリ 41 に \(X_1 \) in the text memory 41

Gold standard ranking:

- **BLEU+1 scores of translations of kbest lists**

Multi-task learning, \(\ell_1 / \ell_2 \) regularization and parallelization

Data

- Single dev, sparse features
- Single dev, dense features
- Multi-task, sparse features

Systems & results:

- **Constrained setup for both JP-EN and ZH-EN subtasks**:
 - **Marton & Resnik’s (2008) soft-syntactic constraints**:
 - \(\{ADJP,ADV,VP,CP,NNP,DT,WP,TO,PP,PP,WR,VP\} \times \{=,+,\} \)
 - **Indicate if spans in decoder derivations**
 - **Match or cross** constituents of syntactic trees
 - **Weights may be tied** (marker: ‘2’) or set independently (marker: ‘\(\)’)
 - **IP2 VP2 NP**, 5 features, \(NP \) tied, IP/VP independent; \(VP2 \) (20 features)

Results on dev:

- **34.06 (baseline) → 34.57 (IP2 VP2 NP)** → **34.84 (XP2)**

Effects of soft-syntactic constraints

<table>
<thead>
<tr>
<th>baseline</th>
<th>Another option</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Another option is coupled to both ends of . . . , thereby allowing . . .</td>
<td>XP2</td>
<td>Another alternative is to couple the ends of . . . , thereby allowing . . .</td>
</tr>
<tr>
<td>(XP2)</td>
<td>Another further option is to optically couple both ends 10 of . . . , thus allowing . . .</td>
<td></td>
</tr>
</tbody>
</table>

Preprocessing (JP-EN only)

- **JP**: Full-width-latin characters converted to their standard UTF-8 equivalents
- **JP**: **Katakana term splitting** (RWTW NTCIR9) w/ compound splitter (Koenig/Knights, 2003)
- **EN**: Customized tokenizer (avoid splitting of FIG. or PAT. . .)
- **both**: **Consistent tokenization** (BBN NTCIR9): training data aligned using regular expressions; for test/dev sources applied the most common variants

SMT setup:

- **cdec SCFG decoder** (Dyer, 2010): Hiero grammars (2 non-terminals max, . . .) built w/ impl. of the suffix array extraction technique of (Lopez, 2007); Sgram modified Kneser-Ney smoothed LM built w/ SRILM; lowercased models; high values for cube pruning pop limit (500) and span size limit (100) at test time; Chinese segmentation w/ Stanford Segmenter, Japanese w/ MeCab; parses w/ Stanford Parser; English tokenizing/recasing/truecasing w/ Moses tools

The HDU Discriminative SMT System for Constrained Data PatentMT at NTCIR10

Institute for Computational Linguistics, Heidelberg University, Germany
Patrick Simianer, Gesa Stupperich, Laura Jehl, Katharina Wäschle, Artem Sokolov, Stefan Riezler

\{simianer,stupperich,jehl,waeschle,sokolov,riezler\}@cl.uni-heidelberg.de