
The TRGTK’s System Description of the PatentMT Task at
the NTCIR-10 Workshop

Hao Xiong
∗

Torangetek Inc./Key Lab. of
Intelligent Information

Processing
Institute of Computing

Technology, CAS
P.O. Box 2704, Beijing

100190, China
xionghao@torangetek.com

Weihua Luo
Torangetek Inc./Key Lab. of

Intelligent Information
Processing

Institute of Computing
Technology, CAS

P.O. Box 2704, Beijing
100190, China

luoweihua@torangetek.com

ABSTRACT
This paper introduces the TRGTK’s system for Patent Ma-
chine Translation at the NTCIR-10 Workshop. In this year’s
program, we participate Chinese-English, English-Japanese
and Japanese-English three subtasks. We submit required
system results for Intrinsic Evaluation (IE), Patent Exami-
nation Evaluation (PEE), Chronological Evaluation (ChE),
and Multilingual Evaluation (ME). Different from last year’s
strategy, we focus on developing a strong and practical sys-
tem for large-scale machine translation requirements. We
design parallel algorithm for Chinese word segmentation,
weights tuning and translation decoding, especially we pro-
pose a documental level translation method to improve the
translation quality of special terms. Experimental result-
s show that our system reduce the training and decoding
time while still achieve promising translation results.

Categories and Subject Descriptors
H.4 []: Artificial Intelligence; D.2.8 [Natural Language
Processing]: Machine Learning—Machine Translation, Paten-
t Translation, Parallel Computing

General Terms
Experiment

Keywords
Machine Translation, Patent Translation, Parallel Comput-
ing

Team Name
TRGTK(Torangetek Inc.)

Subtasks
Chinese-English
Japanese-English
English-Japanese

∗We are a start-up company incubated by Institute of Com-
puting Technology and aim to supply high quality machine
translation service.

1. INTRODUCTION
This year’s Patent Machine Translation task[4] at the NTCIR-

10 workshop consists of C-E, J-E and E-J three subtasks.
Different from last year’s program, the organizers distribute
several testing corpus for four types of evaluations: Intrin-
sic Evaluation (IE), Patent Examination Evaluation (PEE),
Chronological Evaluation (ChE), and Multilingual Evalua-
tion (ME). We participate all kinds of subtasks and submit
all required system results.

Since we are a commercial company, our goal is to supply
fast and reasonable machine translation service for Transla-
tion Aided Company. Thus in this year, we concentrate on
developing a strong and practical system for large-scale ma-
chine translation requirements which is quite different from
other participants where they mainly focus on improving
the translation quality. According to previous work, hier-
archical phrased based(HPB) translation model [1] is well
studied and achieves promising results in previous machine
translation evaluations. Most importantly, HPB is easy to
implement and extend. However, since HPB use CKY al-
gorithm to search the best translation, its decoding time is
unsatisfied when long translation sentence given. To reduce
the time consuming while decoding, we record searching s-
tacks for some high frequently translated phrases, and search
the stacks in parallel. Moreover, we cluster related sentences
into similar documents and design a documental CKY algo-
rithm to translate them simultaneously in order to reduce
the searching time for similar phrases and obtain consisten-
t translation for some special terms such as patent terms.
Furthermore, in the pipeline of machine translation, prepro-
cessing step as Chinese word segmentation is necessary but
time consuming, therefore, we also use parallel algorithm to
accelerate its decoding via computing on GPU because of
its numerous computing units and cheap price. Also, we re-
duce training time by performing rule extraction and word
alignment in parallel. Large scale experiments show that
when using parallel computing on 100 CPU, training time
includes word alignment and weights tuning for 10 million
bilingual corpus is reduced to 8 hours and translation de-
coding speed is 1000 words per second which is qualified to
large scale translation requirements.

The remainder of this paper is organized as follows, we il-
lustrate overall system architecture along with detailed tech-
nical descriptions in Section 2. Section 3 mainly presents our

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

339

Figure 1: The overall architecture of our system,
where step 1 is the corpus preprocessing stage
preparing for the step 2, in which testing sentences
are clustered into several documents and translated
using document-level decoding algorithm.

experimental results, and we conclude our paper in Section
4.

2. SYSTEM ARCHITECTURE
We illustrate system architecture in figure 1, where the

whole process includes two steps including corpus prepro-
cessing and translation generating, respectively. Most of
our techniques in this architecture are similar to the Moses
toolkit’s 1, thus in this section, we will mainly focus on de-
scribing the special designed parts of our system while tem-
porarily omit other skills which will be later introduced in
the experimental section.

2.1 Chinese Word Segmentation on GPU
For natural language applications, word segmentation is

a fundamental research and is necessary for some advanced
applications such as Information Searching, Question An-
swering and Machine Translation. Traditional research on
word segmentation method treat it as the problem of se-
quence labeling and could be solved via three steps: feature
extraction, class prediction and results searching. In these
three steps, the previous two steps could be computed off-
line and hence does not consume time in practical applica-
tions, thus we concentrate on developing parallel algorithm
for the step of results searching. Generally, most researcher-
s utilize dynamic algorithm to find the best segmentation
schema where the global optimal solver based on the local
optimal solution. Under the instruction of dynamic algo-
rithm, we could first divide sentence into multiple phrases

1http://www.statmt.org/moses_steps.html

Figure 2: The detailed process of our segmenter,
where we first search the segmentation schema
based on the matching of historical segmentation
storage, and then parallel search the remaining
phrases whose segmentation are unknown after the
first matching process.

segmented in parallel locally, and then combine them to ob-
tain global segmentation schema recursively. On the other
hand, in recent years, following the tendency of Big Data2,
computing on GPU[6] become increasingly popular benefits
from its numerous computing units and cheap price. Here,
we also perform our segmenter on GPU in order to obtain
extremely computing speed.

Concretely, figure 2 gives a detailed process of our paral-
lel segmenter. Our system consists of two parts where the
first part is computed on the CPU and used for searching
the segmentation schema based on the historical segmenta-
tion of the training sentences in advance. This part is very
useful in large scale application in that it can largely reduce
the segmentation time for some common sentences. For in-
stance, assuming we want to segment the sentence consists
of characters “abcdefghijk”, and the history storage has the
segmentation schema “de fg hi”. In this case, we should
just search the segmentation for phrases “abcde” and “hijk”
since the segmentation of phrase “fg” is known when given
the context “de” and “hi”. It is worth noting that the tra-
ditional approaches for segmentation consider maximal two
characters before and after the current character, thus the
segmentation of phrase “de” in this example is unknown and
should be further searched with the left context“bc”. Anoth-
er part of our system is designed for parallel segmentation
of the remaining phrases whose segmentation are unknown
according to previous matching process. In this part, we
first divide the remaining phrases into several units which

2http://en.wikipedia.org/wiki/Big_data

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

340

2 words 3 words 4 words 5 words 6 words
n+n n+n+n n+n+n+n v+v+n+n+n n+n+c+v|n+n+n
n+v v+n+n n+n+v+n d+v+n+n+n n+n+v|n+c+v|n+n
v+n n+v+n v+n+n+n m+v+m+n+n n+n+u+b+v|n+n
a+n v+v+n v+n+v+n b+v+n+v+n v|n+n+v|n+c+v|n+n
d+n b+v+n n+v+v+n n+n+v+n+n n+v|n+u+n+v|n+n
b+n n+m+n v+v+n+n a+n+v+n+n

v+n+b+n

Table 1: Rules used for generating candidate string for term extraction where a is adjective, b is distinguish
word, c is conjunction, d is adverb, n is noun, m is numbers, v is verb, u is particle, v|n is verb or noun.

just contain five characters and transmit them to the com-
puting units in GPU. Since the size of context window for
features extraction is maximal five, we could parallel pre-
dict the label of each unit independently. After generating
each unit, we then hierarchically search the best solution in
parallel. Since most of words in Chinese generally consists
of not more than five characters, we combine sequential five
units into one big unit and then search the optimal solution
of this unit. Afterwards, we combine two units to search
the segmentation of more characters. This process is recur-
sive and could be easily computed in parallel. Later in the
experimental section, we will show that after computing in
parallel, the time used for segmentation is largely reduced.
1.

2.2 Document-level Decoding
In practical, large number of translation requirements such

as patent translation, stem from documental translation.
Documental translation is characterized by the followings:
firstly special terms like patent terms in the same documen-
t should have consistent translation, second is that some
phrases will appear repeatedly in different sentences, and
lastly contextual knowledge for similar phrases in differen-
t sentence potentially help the selection the better rules.
Thus it is reasonable to develop a documental decoding al-
gorithm that fast and effectively translate overall sentences
using present parallel computing technology. However, to
design a documental level translation approach, there are
several problems need to be addressed: the first is how to
cluster related sentences into one document, second is how
to recognize phrases like patent terms that should have the
consistent translations, last is how to modify original CKY
decoding algorithm to fast generate translation among huge
number of searching stacks.
Document generation. Although the provided patent

documents contain document IDs which could be used to
recognize sentences in one document, for the sake of gener-
ality, we use KNN algorithm[2] to cluster sentences into one
document according to their lexical similarity. To measure
the similarity between two sentences, we follow the tradi-
tional bag-of-words approach that has been applied in relat-
ed tasks[5] which we consider the 5,000 most frequent words
w1, ..., w5000 ∈ W as dimensions of a vector space and define
sentences as vectors using frequency of frequent words:

−→
S = (freq(w1), ..., freq(w5000)) (1)

Given the vector representations of two sentences, we cal-
culate their similarity as the cosine of the angle between the

two vectors:

sim(S1, S2) =

−→
S1 ·

−→
S2

|
−→
S1| ∗ |

−→
S2|

(2)

In our experiments, we control the size of sentences in each
document lower than 50 in order to guarantee sentences in
one document are highly related.

Term Recognition. To measure one candidate string is
a term or not, we follow the traditional approach that use
C-value to measure the termhood, it defines as following

C-value(a) =

log2|a| · f(a), a is not nested, (3a)

log2|a|(f(a)−
1

P (Ta)

∑
b∈Ta

f(b)) (3b)

where a is the candidate string, f(a) is its frequency of
occurrence in the corpus, Ta is the set of extracted candidate
terms that contain a, P (Ta) is the number of these candidate
terms. Readers can refer to [3] for detailed explanation. And
the rules used for generating candidate string is shown in
table 1.

Documental CKY Algorithm. In our decoding stage,
different from traditional CKY algorithm where each word
utilize independent searching stack, we push all similar paten-
t terms or similar phrases with length more ten words into
one searching stack. For better understanding, we illustrate
the decoding process in figure 3. The primary modification
in our methods is that when computing a phrase involves
associated patent terms, the selection of its translation is
not only depending on adjacent words but the context of its
associated terms in another sentences will also be consid-
ered. Thus, we can assure the similar patent terms select
the same translation, and the selected translation has con-
sidered different context in each sentences.

2.3 Translation History Memory
The function of this part is the same as segmentation his-

tory storage in our segmenter which we first translate huge
number of sentences and then record searching stacks for
high frequent translated phrases. When new testing sen-
tence is given, we could reduce the searching time in CKY
algorithm conditioned on the number of matched translated
phrases. In our experiments, we run training set to generate
the historical translation.

3. EXPERIMENTS

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

341

Figure 3: The decoding process for document, where
S0, S1 and Sm are sentences in document, and w0,
w1, wn are corresponding words in these sentences.
Dashed lines connect the similar recognized patent
terms. LocalScore is computed by local features such
as lexical probability, rule size etc,. LM is calculated
by language model given its context.

3.1 Data Usage
The organizers provide both bilingual patent description

sentence pairs for each subtasks as well as monolingual paten-
t grant documents for Japanese and English[4]. However,
provided monolingual corpus contain large number of sen-
tences but some is ancient to testing set, thus we just take
some portion of them to train language model. The overall
corpus we use in our system is presented in table 2.

System Bilingual Monolingual
C-E 1 Million 40 Million
J-E 3 Million 40 Million
E-J 3 Million 73 Million

Table 2: The overall corpus we used in our system,
wherein monolingual corpus are used to train lan-
guage model.

3.2 Preprocessing of Japanese
Japanese is a kind of agglutinative languages. Its biggest

characteristic is to indicate the grammatical relations in a
sentence by means of adhering function words to behind of
notional words. There are no obvious boundaries between
words in Japanese. So, Japanese word segmentation is one
of necessary procedures on machine translation of Japanese-
to-English. Preprocessing on Japanese corpus in out task
consists of two procedures.

1. Full-width characters converting to half-width ones: In
computer editorial process, letters, numbers and sym-
bols may appear in half-width or full-with forms. This
phenomenon will affect phrases’ identification in the
translation process in some extent, which may reduce
the translation quality in the end. So we converted
full-width characters to half-width ones in corpus in
the first step.

2. Japanese word segmentation: Japanese word segmen-
tation is basic task of Japanese information process-
ing, which is also the foundation of Japanese machine
translation. We used Chasen (chasen-2.4.4)3, one of
the most famous open source Japanese lexical analysis
tools, to do the task of Japanese word segmentation
in the second step. Chasen is developed by Nara In-
stitute of Science and Technology, which is based on
Hidden markov model.

3.3 Results on Developing Set
We use the given developing corpus as our developing set,

and use the SRI Language Modeling Toolkit [7] to train
the Japenese/English 5-gram language model with Kneser-
Ney smoothing on the Japenese/English side of the training
corpus in addition with corresponding monolingual corpus.
Noting that, we do not use English sentences in J-E task
to train language model for C-E translation and vice versa.
We use SyMGiza4to generate the word alignment. Table 3
gives the experimental results on developing set.

C-E J-E E-J
33.59 27.08 33.89

Table 3: Experimental results on developing set.

3.4 Large Scale Experiments
Parallel Segmenter. To test the speed of our paral-

lel segmenter, we perform several compared experiments on
C-E translation, first type, namely sys1, use segmentation
historical storage and sys2 does not. Table 4 lists the time
consuming for segmenting 1 million training data. Noting
that we use additional 10 million Chinese sentence to gener-
ate the historical segmentation storage. It is clear that when
more computing units given, the time consuming decrease
significantly. Another funding is that historical storage also
help to reduce the time consuming benefits from that our
additional corpus is also from patent domain.

System GPU Time(minutes)
sys1 500 0.3
sys1 1 32
sys2 500 0.5
sys2 1 40

Table 4: Experimental results for segmenter.

Parallel Translation In this experiment, we evaluate the
whole time for training 10 million bilingual corpus which
3http://chasen-legacy.sourceforge.jp/
4http://psi.amu.edu.pl/en/index.php?title=
SyMGIZA&redirect=no

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

342

includes segmentation, tokenlization, word alignment, rule
extraction, and weights tuning. We also evaluate the time
for decoding the testing set using translation memory from
training set. Table 5 shows the detailed results given differ-
ent configurations for parallel translation. We can find when
given 100 CPU for training, the time drops to 8 hours which
is convenient for large number of experimental attempting.
And the speed of parallel decoding is very fast even with no
historical translation memory which is applicable for large
scale translation requirements.

System CPU Time
parallel training 100 8 hours

training 1 45hours
parallel decoding 100 800words/sec

parallel decoding(Memory) 100 1000words/sec
decoding 1 50words/sec

Table 5: Experimental results for parallel transla-
tion, where storage means using historical transla-
tion records.

3.5 Final Results
Table 6 present our system results on final testing set.

System C-E J-E E-J
IE 34.63 26.99 32.21
ChE 33.46 26.34 31.4
ME 21.52 26.34

Table 6: Evaluation results of our final submission.

4. CONCLUSION
In this paper, we summarize techniques we used in this

year’s evaluation tasks. We participate three subtasks of
Patent Machine Translation task and submit six systems for
each subtask. Our goal is to develop a fast and applicable
translation system for large scale patent translation require-
ments. Experimental results show that when using parallel
computing, our system could deal with 10 million corpus
in 8 hours, which do help researchers for fast experimental
attempting.

5. ACKNOWLEDGMENTS
This section is optional; it is a location for you to acknowl-

edge grants, funding, editing assistance and what have you.
In the present case, for example, the authors would like to
thank Gerald Murray of ACM for his help in codifying this
Author’s Guide and the .cls and .tex files that it describes.

6. REFERENCES
[1] D. Chiang. A hierarchical phrase-based model for

statistical machine translation. In Proceedings of the
43rd Annual Meeting on Association for Computational
Linguistics, pages 263–270. Association for
Computational Linguistics, 2005.

[2] T. Cover and P. Hart. Nearest neighbor pattern
classification. Information Theory, IEEE Transactions
on, 13(1):21–27, 1967.

[3] K. Frantzi, S. Ananiadou, and J. Tsujii. The
c-value/nc-value method of automatic recognition for
multi-word terms. Research and Advanced Technology
for Digital Libraries, pages 520–520, 1998.

[4] I. Goto, K. P. Chow, B. Lu, E. Sumita, and B. K.
Tsou. Overview of the patent machine translation task
at the ntcir-10 workshop. In Proceedings of the
NTCIR-10 Workshop, 2012.

[5] W. Guo and M. Diab. Semantic topic models:
Combining word distributional statistics and dictionary
definitions. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 552–561. Association for Computational
Linguistics, 2011.

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. Gpu computing. Proceedings
of the IEEE, 96(5):879–899, 2008.

[7] A. Stolcke. Srilm - an extensible language modeling
toolkit. In Proceedings of ICSLP, volume 30, pages
901–904, 2002.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

343

