
Team SKL’s Strategy and Experience in RITE2

Shohei Hattori Satoshi Sato

Graduate School of Engneering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN

syohei_h@nuee.nagoya-u.ac.jp, ssato@nuee.nagoya-u.ac.jp

ABSTRACT
This paper describes the strategies and systems of the team
SKL in the RITE2 workshop. We implemented three differ-
ent systems. SKL-01 was designed by two-step classification
strategy. Step1 assigns a default class to a given text pair by
applying a simple rule based on an overlap measure; Step2
examines the necessity of overwriting the default class by ap-
plying heuristic rules. In contrast, SKL-02/03 were designed
by a different strategy, which focused on the development of
character-based features. SKL-02 is a SVM-based system
using these features, and SKL-03 works by hand-tuned de-
cision rules. In the MC subtask of the formal run, our all
three systems ranked the top three.

Team Name
SKL

Subtasks
BC, MC, ExamBC (Japanese)

Keywords
two-step classification strategy, overwriting rules, character-
based features

1. INTRODUCTION
RITE2 [3] is an evaluation-based workshop aiming to rec-

ognize entailment, paraphrase, and contradiction between
sentences. Because we had no experience in participating in
such workshop, we had no concrete plan when we decided
to participate in RITE2 in June 2012.

When the development set was distributed in August, we
noticed that the BC subtask of this year is much easier than
it of the previous RITE [2] in NTCIR-9. We first examined
the classification performance of the character overlap ra-
tio, which will be described later, and found the accuracy is
around 80%.

Based on the fact, we determined the following two-step
classification strategy.

Step1 assigns a default class to a given text pair by applying
a simple rule based on an overlap measure.

Step2 examines necessity of overwriting the default class
by applying heuristic rules.

Because Step1 archives good performance, Step2 should be
carefully applied not to decrease the performance. The SKL-
01 was implemented according to this strategy by the first
author.

Surface similarity
High Low

Semantic High Case 1 (H/H) Case 2 (H/L)
similarity Low Case 3 (L/H) Case 4 (L/L)

Figure 1: 2 × 2 matrix

In contrast, the SKL-02/03, which were implemented by
the second author to fill two more runs, were designed by
a different strategy, which focused on the development of
character-based features. Because they are superb in stabil-
ity and light calculation, they should be explored exhaus-
tively before moving to exploration of semantically-rich fea-
tures. Improvement of the classification based on character-
based features will simplify the next stage of semantic pro-
cessing.

Our system development targeted the BC and MC sub-
tasks. Two days before our submission of the formal run, we
decided to implement subsystems for the ExamBC subtask,
by just adapting the BC subsystems into the ExamBC sub-
task. The confidence score required in the ExamBC subtask
was not seriously examined.

The rest of this paper is organized as follows. Section 2
describes the strategy and details of the SKL-01. Section 3
describes the features and the classifiers used in the SKL-
02/03. Section 4 reports our experimental result in the de-
velopment stage and the formal run.

2. SKL-01

2.1 Strategy
When two sentences have similar meanings, they tend to

be similar in appearance. It is natural and well-known that
semantic similarity and surface similarity are correlated.

Figure 1 shows the 2 × 2 matrix from which we started.
In this matrix, Case 1 and 4 correspond to natural cases.

Case 2 corresponds to the case that two sentences look
dissimilar but have similar meanings. This happens, for ex-
ample, when one is a paraphrase of the other.

Case 3 corresponds to the case that two sentences look
similar but have the different meanings. This happens, for
example, when the small difference is crucial in meaning.

There are several ways to estimate surface similarity be-
tween two sentences. By combining a similarity function
and a threshold value, we can distinguish Case 1/3 from
Case 2/4.

In addition, we try to distinguish Case 3 from Case 1 by
examining whether the surface difference between two sen-

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

435

tences is crucial or not in meaning. By our intuition, sepa-
ration of Case 3 from Case 1 is much easier than separation
of Case 2 from Case 4.

2.2 Generalized Overlap Ratio
First of all, we define two generalized functions of overlap

ratio. We assume that a set of entities E is given, where enti-
ties are, for example, characters, character n-grams, words,
and word n-grams. Under this assumption, we define the
following function that calculates how many number of E’s
entities are overlapped between two strings s1 and s2.

overlap(E; s1, s2) =
∑
x∈E

min(fr(x, s1), fr(x, s2)) (1)

where a function fr(x, s) calculates the frequency of an en-
tity x in a string s.

By using this function, we define two functions of overlap
ratio as follows.

overlap ratioB(E; s1, s2) =
2 overlap(E; s1, s2)∑

x∈E

fr(x, s1) +
∑
x∈E

fr(x, s2)

(2)

overlap ratioD(E; s1, s2) =
overlap(E; s1, s2)∑

x∈E

fr(x, s2)
(3)

The first function overlap ratioB is bidirectional, i.e.,

overlap ratioB(E; s1, s2) = overlap ratioB(E; s2, s1) (4)

In contrast, overlap ratioD is directional because it is nor-
malized by the length of s2. We use the latter for detecting
entailment because entailment is a directional relation. The
former is used for detecting contradiction, which is a bidi-
rectional relation.

By using the generalized function (3), we can define several
different functions by changing E. For example, by using C,
the set of all characters used in Japanese texts, we can define
the character overlap ratio (corD) as follows.

corD(s1, s2) = overlap ratioD(C; s1, s2) (5)

This is the same as the function used in the RITE1’s baseline
method [2], written in a different formalization. Similarly,
the overlap ratio of character bigrams (borD) is defined as
follows.

borD(s1, s2) = overlap ratioD(C2; s1, s2) (6)

2.3 Surface Similarity
In order to find the best similarity function, we examined

nine candidates; each of which uses one of the following sets
as E in Equation (3):

C, C2, C3, W , W 2, W 3, L, L2, L3

where C is the set of all characters, W is the set of all words
in surface form, and L is the set of all words in normalized
(lemmatized) form.

Table 1 shows our experimental result of the binary classi-
fication (Y: s1 entails s2, N: otherwise), where we used both
the BC and MC development sets, shown in Table 2. Clearly,
the simple character overlap ratio defined in Equation (5) is
the best among nine candidates. Based on the result, we de-
cided to use the character overlap ratio to estimate surface
similarity.

Table 1: Performance of overlap ratios

E th. Y N acc.
C 0.69 499/613 472/629 78.3
L 0.66 468/613 471/629 75.6
W 0.64 452/613 477/629 74.8

C2 0.45 484/613 472/629 77.1
L2 0.35 413/613 487/629 72.5
W 2 0.29 443/613 447/629 71.7

C3 0.35 410/613 490/629 72.5
L3 0.19 365/613 472/629 67.4
W 3 0.18 355/613 480/629 67.2

th.: the best threshold, acc.: classification accuracy

Table 2: How to use development sets

task BC MC #
label Y N B F C I of
240 371 83 207 65 193 ins.

direction f f f b f f f
Y

√ √ √ √
613

N
√ √ √

629
f: forward, b: backward

2.4 Overwriting Rules
Next, we proceeded to the development of overwriting

rules. Careful observation of the BC development set re-
vealed that mismatch of named entities (proper nouns) and
numbers causes semantic dissimilarity. Based on this obser-
vation, we have implemented two functions: NE mismatch
and Num mismach.

NE mismatch detects mismatch of named entities of a
sentence pair 〈s1, s2〉. When s2 includes a named entity that
does not appear in s1, the function returns true; otherwise
false. In order to detect named entities in sentences, we
use JUMAN, a morphological analyzer. When a morpheme
(word) whose syntactic category is proper noun or which has
the feature of “automatically extracted from Wikipedia”1,
we detect it as a named entity.

Matching of two named entities is not straightforward be-
cause of spelling variants, especially when they are written
in Katakana. We use a simple heuristic to bridge two differ-
ent Katakana spellings of the same named entity.

Num mismatch is a similar function that focuses on num-
bers in sentences. Detection of the numbers in sentences is
much easier than that of named entities, but still several
heuristics are necessary to handle spelling variants, such as
Kanji numerals and Arabic numerals.

2.5 BC-01 Subsystem
Figure 2 shows the pseudo-code of the BC-01 subsystem.

In this code, the default rule is enhanced by using a function
korD, in order to improve the classification accuracy of sen-
tence pairs around the threshold (0.73 > corD > 0.65). The
function korD is another overlap ratio, defined as follows.

korD(s1, s2) = overlap ratioD(K; s1, s2) (7)

where K is the union of Kanji characters and Katakana char-
acters. Because Kanji and Katakana characters are used to

1This feature is not included in the data provided by RITE2
organizer.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

436

def BC-01(s1, s2)
if ((corD(s1, s2) ≥ 0.73) or

(korD(s1, s2) > corD(s1, s2) ≥ 0.69) or
((0.69 > corD(s1, s2) > 0.65) and
(korD(s1, s2) − 0.1 > corD(s1, s2))))

if (NE mismatch(s1, s2) or Num mismatch(s1, s2))
return N11

else
return Y12

end
else
return N2

end
end

Figure 2: BC-01 subsystem

def MC-01(s1, s2)
if contradict(s1, s2) then return C1

elsif BC-01(s1, s2) = Y
if BC-01(s2, s1) = Y then return B21

else return F22

end
else return I23
end

end

def contradict(s1, s2)
((corD(s1, s2) ≥ 0.69) and
(borD(s1, s2) > 0.65) and
Num mismatch(s1, s2)) # cond1

or
((0.69 > corD(s1, s2) > 0.59) and
overlap ratioB(C, s1, s2) ≥ 0.5)) # cond2

or
((0.69 > corD(s1, s2) > 0.5) and
ht ratio(s1, s2) ≥ 0.4)) # cond3

or
((corD(s1, s2) > 0.69) and
ht ratio(s1, s2) ≥ 0.75)) # cond4

end

Figure 3: MC-01 subsystem

represent content words in general, korD focuses on the con-
tent part of two sentences, compared with corD.

2.6 MC-01 Subsystem
The MC-01 subsystem is implemented by combining the

BC-01 subsystem and additional conditions that detect con-
tradiction. Figure 3 shows the pseudo-code of the MC-01
subsystem. The toplevel of the structure is straightforward.

There are four conditions that detect contradiction, which
were implemented based on the observation of the devel-
opment set. In all conditions, the character overlap ratio
(corD) is used. In the first condition, the ratio of character
bigrams (borD) and mismatch of numbers (Num mismatch)
are combined. In the second condition, the bidirectional
character overlap ratio (overlap ratioB) is combined. The
third and fourth conditions use a new function ht ratio,
which is another estimation of surface similarity. We will
explain it later, in Section 3.1.3.

def ExamBC-01(s1, s2)
if ((corD(s1, s2) ≥ 0.73) or

(korD(s1, s2) > corD(s1, s2) ≥ 0.69))
if (NE mismatch(s1, s2) or Num mismatch(s1, s2))
return [N11a, 1]

else
return [Y12a, corD(s1, s2)]

end
elsif ((0.69 > corD(s1, s2) > 0.65) and

(korD(s1, s2) − 0.1 > corD(s1, s2)))
if (NE mismatch(s1, s2) or Num mismatch(s1, s2))
return [N11b, 1 − corD(s1, s2)]

else
return [Y12b, corD(s1, s2) + 0.1]

end
else
return [N2, 1 − corD(s1, s2)]

end
end

Figure 4: ExamBC-01 subsystem

〈s1, s2〉
��

�
�
�

feature
extractor

�
feature vector, v

� �
SVM-based

classifier

�
�

�
�

classifier
by decision rules

�
�

�
�

� �
class

(SKL-02)

class

(SKL-03)

Figure 5: Architecture of SKL-02/03

2.7 ExamBC-01 Subtask
The ExamBC-01 subsystem is the BC-01 subsystem with

confidence score estimation, shown in Figure 4. Classifica-
tion rules are the same but each of N11 and Y12 is divided
into two sub-rules because of different assignment of the con-
fidence score. We just implemented the confidence-score es-
timation by intuition and did not seriously examined it.

3. SKL-02 AND SKL-03
As mentioned earlier, the development of the SKL-02/03

focused on the exploration of character-based features. Fig-
ure 5 shows the architecture of the SKL-02/03. Each subsys-
tem (i.e., SKL-task-(02/03)) consists of two modules, feature
extractor and classifier. The former is shared by all subsys-
tems. In contrast, the latter is independent.

3.1 Features
All features used in the SKL-02/03 are character-based;

they are extracted directly from a given pair 〈s1, s2〉 with no
extra linguistic resources and tools.

Table 3 overviews the features produced by the feature ex-

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

437

Table 3: Features extracted from 〈s1, s2〉
02 03

ID BC MC EBC class description type range
x0 C1 overlapB(C1; s1, s2) int. 0 ≤ x0
x1

√
C1 |c1(s1)| + |c1(s2)| − 2 x0 int. 0 ≤ x1

x2
√

C2 overlapB(C2; s1, s2) int. 0 ≤ x2
x3

√
C2 |c2(s1)| + |c2(s2)| − 2 x2 int. 0 ≤ x3

x4
√ √

C1 f15 + b15 int.
x5

√
C1 f21 + r21 int. 0 ≤ x5 ≤ 20

x6
√

C1 |t| int. 0 ≤ x6
x7

√
C1 |shift(s2,u2) − shift(s1,u1)| real 0 ≤ x7

x8
√

C1 max(|shift(s2,u2)|, |shift(s1,u1)| real 0 ≤ x8
f0

√ √
C1 |c1(s2)| int. 0 < f0

f1
√ √

C1 |c1(s2)|/|c2(s1)| real 0 < f1
f2

√ √
C1 f0 − x0 int. 0 ≤ f2

f3
√ √ √ √

C1 overlap ratioD(C1; s1, s2) = x0/f0 real 0 ≤ f3 ≤ 1
f4

√ √
C1 (f2 + b2)/|c1(s2)| real 0 ≤ f4

f5
√ √

C2 |c2(s2)| int. 0 < f5
f6

√ √
C2 |c2(s2)|/|c2(s1)| real 0 < f6

f7
√ √ √

C2 f5 − x2 int. 0 ≤ f7
f8

√ √
C2 overlap ratioD(C2; s1, s2) = x2/f5 real 0 ≤ f8 ≤ 1

f9
√ √

C2 (f2 + b2)/|c2(s2)| real 0 ≤ f9
f10

√
f8 − f3 real

f11
√ √

C1 head-character difference binary 0 or 1
f12

√ √ √
C1 # of Arabic numerals in u2 (max. 5) int. 0 ≤ f12 ≤ 5

f13
√ √

C1 # of Roman alphabets in u2 (max. 5) int. 0 ≤ f13 ≤ 5
f14

√ √ √
C1 # of Kanji numerals in u2 (max. 5) int. 0 ≤ f14 ≤ 5

f15
√ √

C1 δ(s1, s2) int.
f20

√ √
C1 umc(5,u2) int. 0 ≤ f20 ≤ 5

f16–f19 and f21–f23 are omitted because they are not used by the final version of classifiers.

tractor. A feature vector v consists of three parts: (1) bidi-
rectional features (x0–x8), (2) forward features (f0–f23),
and (3) backward features (b0–b23). Backward features are
not shown in Table 3, because they are the same as the for-
ward features calculated from the reverse pair 〈s2, s1〉. From
a feature vector v, the feature vector of the reversed pair can
be easily produced by swapping the last two parts.

Behind these features, three new operations exist: class-
based string reduction, generation of masked strings, and
string decomposition into three parts.

3.1.1 Character Class and String Reduction
The Japanese language has several different types of char-

acters. Hiragana, Katakana, and Kanji are three major
types but other character types such as Roman alphabet
and Arabic numerals are also used. In addition, a dozen
symbols such as punctuation marks and quotation marks
are included in texts.

By convention, each character type plays a particular role
in Japanese writing. Kanji is used to write content words.
Katakana is used to write imported words from other lan-
guages. Hiragana is mainly used to write functional words.
Therefore an average impact per character to content in-
formation varies according to character types: Kanji and
Katakana are high; Hiragana is low.

To take this into account, we introduce character class.
In practice, we define three classes. Class0 (the same as
C in the previous section) includes all characters. Class1
(C1) excludes punctuation marks, which bring no content
information. Class2 (C2, which is the same as K in the pre-
vious section) consists of only Katakana and Kanji charac-

original string s = c0(s) = 飲むヨーグルトは、酒の一種だ。
class1 string c1(s) = 飲むヨーグルトは酒の一種だ
class2 string c2(s) = 飲ヨーグルト酒一種

Figure 6: Class-based string reduction

ters, which are primal types of characters that bring content
information.

Class-based string reduction is the operation that removes
all characters that are not included in a given character
class. For example, Class1-reduction (function c1) removes
all punctuation marks from a given string; Class2-reduction
(function c2) removes all characters except Kanji and Katakana.
We call the produced string by classN -reduction classN-
string. Figure 6 shows an example of class-based string re-
duction.

3.1.2 Masked String
A masked string is produced by replacing some characters

into a masked symbol (for which we practically use “.”). It
was first introduced for debugging.

Figure 7 shows examples of masked strings. First, from
a given pair 〈s1, s2〉, we calculate the overlapped charac-
ters. Next, we produced two types of masked strings: ui

is produced from si by masking the overlapped characters
(in other words, characters that are not overlapped remain);
oi is produced from si by masking the characters that are
not overlapped. From these masked strings, we easily know
what part of a string is common and different between two
strings.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

438

s1 プロメーテウスは人類に火を渡し張り付けにされた
s2 プロメテウスは人類に火を齎して罰を受けた
u1 ...ー.........渡.張り付.にされ.
u2齎.て罰を受..
o1 プロメ.テウスは人類に火を.し...け...た
o2 プロメテウスは人類に火を..し....けた

Figure 7: Masked strings

h b1 t

s1 プロメ ーテウスは人類に火を渡し張り付けにされ た

s2 プロメ テウスは人類に火を齎して罰を受け た
h b2 t

Figure 8: String decomposition

The value of the feature f11 (head-character difference)
is calculated by using u2. If the first character (ignoring
quotation marks) of u2 is the masked symbol, then the value
is 0; otherwise 1.

The values of f12, f13, and f14 are calculated by counting
particular types of characters in u2: Arabic numerals (f12),
Roman alphabets (f13), and Kanji numerals (f14).

The features f20 focuses on the last part of u2. The value
is the number of unmasked characters (umc) in the last five
characters in u2. This feature was introduced because a
predicate (a verb optionally with tense and negation) is lo-
cated in the last part of a sentence in the Japanese language.

The center of a string is defined as a half of the length.
Usually, the masked characters are not distributed uniformly,
so the center of the masked string shifts to left or right. A
function shift calculates this shift, as follows,

shift(s,u) =
1

n

|s|∑
p=1

d(
|s|
2

, p) (8)

d(c, p) =

{
0 if p-th character of u is masked
p − c otherwise

(9)

where n is the number of unmasked characters in u. This
function is used to calculate two features, x7 and x8.

3.1.3 String Decomposition into Three Parts
The last operation is string decomposition into three parts.

Figure 8 illustrates this operation. For a given pair 〈s1, s2〉,
the longest common prefix (h) and the longest common suf-
fix (t) are determined. By using these substrings, each string
decomposes into three parts,

s1 = h + b1 + t (10)

s2 = h + b2 + t (11)

where b1 and b2 are the different middle parts.
The length of the longest common suffix (i.e., |t|) is used

as the value of the feature x6. In addition, the feature f15 is
calculated from this decomposition via a function δ, which
is defined as follows.

δ(s1, s2) = |h| + |t| − |b2| (12)

The function ht ratio in the previous section is also cal-
culated from this decomposition. The definition of ht ratio

def MC-02(v)
if SVM-BC(v) > 0
if SVM-BC(backward(v)) > 0 then return B11

elsif SVM-FC(v) > 0 then return F12

else return C13

end
else
if (SVM-nI(v) > 0 or

SVM-nI(backward(v)) > 0) then return C21

elsif SVM-C(v) > 0 then return C22

else return I23
end

end
end

Figure 9: MC-02 subsystem

is as follows.

ht ratio(s1, s2) =
2 (|h| + |t|)
|s1| + |s2| (13)

3.2 SKL-02 (SVM)
The SKL-02 is a SVM-based system. We have developed

six SVMs in total, shown in Table 4. Each line shows the
training configuration of a SVM, i.e., what part of the de-
velopment sets are used as positive examples (+1) and neg-
ative examples (−1) in training. We have used the liblinear
software package [1] with the default setting. Note that all
feature values are normalized into the range between zero to
one, in preprocessing.

Each classifier of two binary classification subtasks is a sin-
gle SVM trained by the development set. This is a straight-
forward implementation.

In contrast, the MC-02 subsystem uses four SVMs shown
in Figure 9. The point of the MC subtask is how to rec-
ognize contradiction. For this purpose, we have introduced
three SVMs (SVM-FC, SVM-nI, SVM-C) to separate con-
tradiction from other classes, in addition to the SVM-BC,
which recognizes entailment from s1 to s2.

The confidence score, which is required in the ExamBC
subsystem, was not seriously investigated. We just used the
following equation.

c score(s1, s2; th) = |overlap ratioD(C1; s1, s2) − th| (14)

where C1 is the set of Class1 characters, and th is a threshold
value, for which we used 0.70. This definition was also used
in the ExamBC-03 subsystem.

3.3 SKL-03 (DR)
The SKL-03 uses decision rules for classification, which

have been tuned manually. The pseudo-code of the BC-
03 subsystem is shown in Figure 10; it of the ExamBC-03
subsystem is shown in Figure 11. In both subsystems, the
primal feature is f3. In addition, the BC-03 subsystem uses
six secondary features, f11, f12, f13, f14, f7, and f20. In
contract, the ExamBC-03 subsystem is much simpler; it uses
only one secondary feature, f10.

The MC-03 subsystem is much more complicated, shown
in Figure 12. It calls the BC-03 subsystem as a subroutine,
with a different threshold value (0.66). Another subroutine,
count counts the number of conditions that are satisfied.
The list of the 16 conditions (which are omitted in this pa-

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

439

Table 4: Six SVMs of SKL-02

task BC MC ExamBC # of ins.
label Y N B F I C Y N +1 −1
240 371 83 207 193 65 210 330

direction f f f b f b f b f b f f
BC-02 SVM-Y +1 −1 240 371
MC-02 SVM-BC +1 −1 +1 +1 +1 −1 −1 −1 −1 −1 613 1094

SVM-FC +1 +1 +1 −1 −1 372 130
SVM-nI +1 +1 +1 −1 −1 −1 −1 −1 373 723
SVM-C −1 −1 +1 +1 130 386

ExamBC-02 SVM-Ex +1 −1 210 330
f: forward, b: backward

def BC-03(v, th := 0.718)
if (v.f3 > th and

v.f11 = 0 and v.f12 < 2 and v.f13 < 2 and v.f14 < 2)
if v.f7 ≥ 7 then return N11

elsif v.f20 = 0 then return N12

else return Y13

end
else return N2

end
end

Figure 10: BC-03 subsystem

def ExamBC-03(v)
cs := c score(s1, s2; 0.70)
if v.f3 > 0.70 then return [Y1, cs]
elsif v.f3 > 0.60 and v.f10 > 0.10 then return [Y2, cs]
else return [N3, cs]
end

end

Figure 11: ExamBC-03 subsystem

per) were constructed based on the observation of the de-
velopment set.

4. RESULTS AND DISCUSSION
Table 5 shows our results in the development stage and

the formal run [3].
From the result of the formal run, we can observe the

followings.

1. In the MC subtask, our all three systems ranked the
top three.

2. SKL-02 is the best among three systems in average of
three subtasks.

3. In the ExamBC subtask, the value of correct answer
ratio (CAR) of SKL-01 is extremely low.

The first fact surprised us because three MC subsystems
are quite different. The second fact is as expected because
SKL-02 was the best in the development stage. The last fact
comes from the poor estimation of the confidence score.

The bottom part of Table 5 shows the performance drop
of each subsystem, from the development stage to the formal
run. From this part, we can observe the surprising fact that
the performance of SKL-MC-01 in the formal run is better
than it in the development stage.

def MC-03(v)
if BC-03(v, 0.66)= Y
if v.x3 ≤ 17
if (v.f15 ≥ 10 or v.b15 ≥ 10 or

v.x3 �= 0) then return C111

elsif BC-03(backward(v), 0.66) = Y1121

if v.b12 > 0 then return C1122

elsif v.b14 > 0 then return F1123

else return B1123

end
elsif (v.f3 ≤ 0.70 and

v.b3 ≤ 0.55) then return B113

elsif v.f12 > 0 and v.f15 > −40 then return C114

elsif v.f6 ≥ 1.0 then return C115

else return F116

end
else

if v.f7 > 10 then return I121
else return F122

end
end

else
if v.f3 < 0.55 then return I21
elsif ((v.f3 > 0.70 or v.b3 > 0.70) and

v.f15 > −40 and v.f3 ≤ 17 and
v.f3 �= 0) then return C22

elsif count(v) ≥ 5 then return F23

else return I24
end

end
end

Figure 12: MC-03 subsystem

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

440

Table 5: Our results in the development stage and the formal run

BC MC ExamBC
acc. M-F1 # acc. M-F1 # acc. M-F1 CAR #

Development SKL-01 85.43 84.98 (2) 65.15 58.81 (3) 68.04 64.40 42.21 (3)
SKL-02 86.42 85.93 (1) 70.26 60.58 (2) 69.61 67.80 52.27 (1)
SKL-03 85.43 84.50 (3) 73.36 65.98 (1) 68.82 67.21 50.00 (2)

Formal Run SKL-01 78.85 78.61 7 69.53 59.96 1 67.63 61.65 29.63 11
SKL-02 79.84 79.46 3 68.61 58.25 2 65.63 64.04 49.07 8
SKL-03 77.21 76.40 13 68.07 55.45 3 63.17 60.47 42.59 12

Best 81.64 80.49 1 69.53 59.96 1 70.31 67.15 57.41 1
Baseline 63.93 62.53 29 45.44 26.61 16 56.47 54.77 32.41 25

Performance SKL-01 -6.58 -6.37 +4.38 +1.15 -0.41 -2.75 -16.58
Drop SKL-02 -6.58 -6.47 -1.65 -2.33 -3.98 -3.76 -3.2

SKL-03 -8.22 -8.10 -5.29 -10.53 -5.65 -6.74 -7.41
acc.: accuracy, M-F1: macro F1, CAR: correct answer ratio, #: rank

Table 6: Performance of each rule of three subsystems in the MC subtask
system c rule B F C I total recall prec
SKL-01 B 48 / 44 16 / 7 3 / 2 7 / 8 74 / 61 58% / 63% + 65% / 72% +

F 14 / 9 142 / 156 21 / 17 19 / 21 196 / 203 69% / 76% + 72% / 77% +
C 10 / 8 9 / 11 20 / 11 20 / 13 59 / 43 31% / 18% 34% / 26%

cond2 7 / 6 7 / 9 9 / 6 19 / 10 42 / 31 14% / 10% 19% / 21% +
cond1 0 / 0 1 / 1 6 / 2 1 / 2 8 / 5 9% / 3% 75% / 40%
cond4 3 / 2 1 / 1 4 / 1 0 / 1 8 / 5 6% / 2% 50% / 20%
cond3 0 / 0 0 / 0 1 / 2 0 / 0 1 / 2 1% / 3% + —

I 11 / 9 40 / 31 21 / 31 147 / 170 219 / 241 76% / 80% + 67% / 71% +
SKL-02 B B11 56 / 44 10 / 6 7 / 2 5 / 5 78 / 57 67% / 63% 72% / 77% +

F F12 13 / 7 154 / 157 24 / 21 14 / 29 205 / 214 74% / 77% + 75% / 73%
C 8 / 15 9 / 10 10 / 7 9 / 10 36 / 42 15% / 11% 28% / 17%

C21 6 / 14 7 / 7 4 / 7 5 / 8 22 / 36 6% / 11% + 18% / 19% +
C22 2 / 1 2 / 3 5 / 0 4 / 2 13 / 6 8% / 0% 38% / 0%
C13 0 / 0 0 / 0 1 / 0 0 / 0 1 / 0 2% / 0% —

I I23 6 / 4 34 / 32 24 / 31 165 / 168 229 / 235 85% / 79% 72% / 71%
SKL-03 B 63 / 43 18 / 15 3 / 3 6 / 5 90 / 66 76% / 61% 70% / 65%

B1113 59 / 43 14 / 10 3 / 3 5 / 5 81 / 61 71% / 61% 73% / 70%
B112 4 / 0 4 / 5 0 / 0 1 / 0 9 / 5 5% / 0% 44% / 0%

F 4 / 12 154 / 161 21 / 23 15 / 35 194 / 231 75% / 79% + 79% / 70%
F122 0 / 1 90 / 105 11 / 11 11 / 24 112 / 141 44% / 51% + 80% / 74%
F115 3 / 5 59 / 51 9 / 10 4 / 7 75 / 73 29% / 25% 79% / 70%
F23 0 / 1 3 / 4 1 / 2 0 / 3 4 / 10 1% / 2% + 75% / 40%

F1112 1 / 5 2 / 1 0 / 0 0 / 1 3 / 7 1% / 0% —
C 6 / 9 4 / 6 17 / 4 4 / 7 31 / 26 17% / 7% 55% / 15%

C22 2 / 4 2 / 5 5 / 2 2 / 3 11 / 14 8% / 3% 45% / 14%
C111 3 / 5 1 / 1 6 / 1 1 / 2 11 / 9 9% / 2% 55% / 11%
C113 0 / 0 1 / 0 3 / 1 0 / 1 4 / 2 5% / 2% 75% / 40%
C1111 0 / 0 0 / 0 2 / 0 1 / 1 3 / 1 3% / 0% —
C114 1 / 0 0 / 0 1 / 0 0 / 0 2 / 0 2% / 0% —

I 10 / 6 31 / 23 24 / 31 168 / 165 233 / 225 88% / 79% 72% / 73% +
I21 6 / 4 12 / 6 12 / 18 108 / 123 138 / 151 57% / 59% + 78% / 81% +
I24 4 / 2 18 / 17 11 / 13 57 / 40 90 / 72 30% / 19% 63% / 56%
I121 0 / 0 1 / 0 1 / 0 3 / 2 5 / 2 2% / 1% —

gold standard 83 / 70 207 / 205 65 / 61 193 / 212 548 / 548
Note: development / formal run

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

441

In order to explore the reason, we have examined the per-
formance of each rule of three subsystems in the MC sub-
task. Table 6 shows the result. From this table, we can ob-
serve that three rules of SKL-MC-01 that detect class B, F,
and I work better in the formal run than in the development
stage. Because these three rules are bidirectional application
of SKL-BC-01, shown in Figure 3, the better performance
of SKL-MC-01 comes from the ability of SKL-BC-01.

Contradiction (C) detection is the most difficult in the
MC subtask, and SKL-MC-01 has shown relatively high per-
formance (18% recall and 26% precision). Probably this
comes from the design principle of the contradiction detec-
tion in SKL-MC-01; we have employed the conditions that
do not interfere with the entailment detection (i.e., detection
of class F and B).

5. CONCLUSION
This paper has reported three systems of the team SKL

that participated in the formal run of RITE2. SKL-01,
which was designed according to two-step classification strat-
egy, ranked first in the MC subtask. SKL-02, which used
only character-based features, ranked second in the MC sub-
task and third in the BC subtask. These results show that
our two different strategies were both effective.

6. REFERENCES
[1] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and

C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[2] H. Shima, H. Kanayama, C.-W. Lee, C.-J. Lin,
T. Mitamura, Y. Miyao, S. Shi, and K. Takeda.
Overview of NTCIR-9 RITE: Recognizing Inference in
TExt. In Proceedings of NTCIR-9 Workshop Meeting,
2011.

[3] Y. Watanabe, Y. Miyao, J. Mizuno, T. Shibata,
H. Kanayama, C.-W. Lee, C.-J. Lin, S. Shi,
T. Mitamura, N. Kando, H. Shima, and K. Takeda.
Overview of the recognizing inference in text (RITE-2)
at NTCIR-10. In Proceedings of the 10th NTCIR
Conference, 2013.

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

442

