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Alignment-based RITE approach

* |ntuition: sufficiently good alignment
— close lexical and structural similarity
— entailment relation
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Alignment-based RITE approach

* Shortage:
— originally developed for machine translation
— not justify non-entailment pairs ®
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Labeled alignment scheme

 Augment the normal alignment with negative

links

Many
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Negative links:
flood ™ ferry sinking

Therefore, non-entailment

Roadmap:

|) manually annotate

2) train an alignment model

3) train an RITE predict model



Labeled alignment scheme

* More examples
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Labeled alignment scheme

* More examples
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Labeled-alignment-based RITE
approach
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Labeled-alignment-based RITE

Link Type Features

Whether e, and e, are in an synonym list

Whether e, and e, are unequal numbers

Whether e, and e, are different named entities

Relation of e, and e, in an ontology (hyponym, sibling, etc.)
Ontology-based similarities of e, and e,

Count of common characters

Length of the common prefixes

Length of the common suffix

Tuple of the syntactic tags

Tuple of the ancestors in an ontology

Tuple of whether e, or e,is in a list of negative expressions

Tuple of whether e, or e, is the head of a noun phrase



Labeled-alignment-based RITE

® Classification component

o Sample representation: single flat vector that
combines the features extracted from all the links

o Classifier: RBF-kerneled SVM (1-vs-rest for MC)
® Open question: why a cascaded system that

- first classifies the link ty

pe

- then classifies the RITE relation

performs poorly ? (worse than baseline)



Labeled—alignment-based RITE

e Possible answer for the failure of a cascaded
system : not robust enough under current
(public) available resources

For example:
= W VAN P V% 2= Y (] e
= W VAN P A 70T Y (] e
— Hard to accurately decide whether two normal

Chinese words are antonym or not with the
knowledge base of CiLin and mini-Hownet.




Formal Run

e System Implement

— automated supervised-learning aligner

(N. chambers et al.,2007; B. MacCartny et al.,
2008)

— Manually annotate the training data set
 alignment links
* positive/negative labels



Formal Run -- aligner

Structured prediction
MIRA training process

Inputs

training problems (P, H;). j = 1.n

corresponding gold-standard alignments E£;

a number of learning epochs NV (e.g. 50)

a “burn-in” period Ny < N (e.g. 10)

initial learning rate iy (e.g. 1) and multiplier r (e.g. 0.8)
a vector of feature functions ®{ E')

an alignment algorithm ALIGN(FP, H: w) which finds a
good alignment for (P, H) using weight vector w

Initialize

Setw = 1)

Repeat fori=1to N

Set If; = r - K;—, reducing the learning rate

Randomly shuffle the training problems

Forj=1to n:
- Set E;
- Setw=w+ ;- 7)) — ‘I?(ETJ-))

Setw = w/||w||, (L2 normalization)

Set w|i]| = w, storing the weight vector for this epoch

Return an averaged weight vector:
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Formal Run — aligner (decoding)

Inputs
e an alignment problem (P, H)
a number of iterations NV (e.g. 100)
initial temperature Tp (e.g. 40) and multiplier r {(e.g. 0.9)
a bound on edit size mazx (e.g. 6)
an alignment scoring function, SCORE(E)

Initialize
e let E be an “empty” alignment for (P, H) (containing
only DEL and INS edits, no EQ or SUB edits)
o SetE=E

Repeat fori=1to V
e Let {F), F5. ...} be the set of possible successors of E.

To generate this set:
( possible edit [ yb to size max

-~ Consider eve
— Let C(E, f) be the set of edits in E which “con-
flict” with f (i.e.. involve at least some of the same
tokens as f)
- Let F = EU{f}\ C(E. )
e Let s(F') be a map from successors of E' to scores gener-
ated by SCORE
e Set p(F') = exps(F), and then normalize p(F), trans-
forming the score map to a probability distribution

e SetT;, =r - T;-
o Setp(F) = p(F)"' "¢, smoothing or sharpening p(F)
e Renormalize p( F)
e Choose a new value for £ by sampling from p(F’)
e If SCORE(E) > SCORE(E), set E=E
Return E

— ~ T - - [

Stimulated annealing algorithm

“Possible edit” means
“possible alignment link”

Generated from:
|) Each segmented word in t;, = Each
segmented word in t,
2) Each syntactic node in t; = Each
syntactic node in t,
3) Each NE in t; & Each NE in t,
4) Expression e, in t; = Expression e,
in t, where,
(e|,e,) appears in a synonym list,
or a antonym list,
or in Cilin,
or in hownet,
or other resources



Formal Run

e System Implement
— Segment: BaseSeg (Zhao and Kit, 2006)

— Syntactic parser: Stanford factored parser
— NER: BaseNER (zhao and Kit, 2008)

— Chinese ontologies: Cilin (Mei et al.,1983; Luo, 2007),
Hownet (Dong, 2003; Liu and Li, 2002; Liu and Singh, 2004)

— Classifier: LibSVM (Lin, 2011)



Formal Run

Macro-F1 | Macro-F1 Worse. Rank.
on BC on MC on RITE4AQA

Run0O1 Char-overlap 67.04 39.95 2.67*
Run02 Normal-align. 66.89 44.88 0.00*
Run03 Labeled-align. 73.84 56.82 8.00*

* not checked during formal run due to limit of time
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