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ABSTRACT
This paper describes the THK system that participated in
the BC subtask, MC subtask, ExamBC subtask and UnitTest
in NTCIR-10 RITE-2. Our system learns plausible transfor-
mations of pairs of Text t1 and Hypothesis t2 only from se-
mantic labels of the pairs using a discriminative probabilistic
model combined with the framework of Natural Logic. The
model is trained so as to prefer alignments and their seman-
tic relations which infer the correct sentence-level semantic
relations. In the formal run, we achieved the highest perfor-
mance of detecting contradictions in the MC subtask (28.57
of F1).
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Subtasks
BC subtask, MC subtask, ExamBC subtask and UnitTest
(Japanese)

Keywords
textual entailment, natural logic, log-linear model, hidden
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1. INTRODUCTION
In this paper, we describe the THK system, a Japanese

textual entailment recognition system, that participated in
the NTCIR-10 RITE-2 (Recognizing Inference in TExt) [9].
Our system is based on the latent discriminative model com-
bined with the framework of Natural Logic proposed by
Watanabe et al. [10]. The model aligns units in two sen-
tences t1 and t2, and labels semantic relations defined in
Natural Logic [4] to the units. Then a sentence-level se-
mantic relation is inferred from the set of alignments, their
semantic relations and their contexts. The parameters of the
model is trained so as to prefer alignments that infer correct
sentence-level semantic relations. We report the results of
our system that participated in the four subtasks: BC sub-
task, MC subtask, ExamBC subtask and UnitTest. In the
MC subtask, our system achieved the highest performance
in terms of contradiction relation detection.
This paper is organized as follows. At first we describe

the theory of Natural Logic (Section 2) and an overview of
our system (Section 3). Then we report the setting for the
formal run (Section 4) and the results (Section 5). Finally
we conclude in Section 6.

2. NATURAL LOGIC
The concept of Natural Logic, a logic over natural lan-

guage, is originally proposed by [1], and then [7, 8] and [6]
explored monotonicity calculus1 to explain entailment re-
lations using Natural Logic. While they considered only
containment relations, [4] introduced an exclusion relation
to deal with entailment relations which involve different ob-
jects or concepts (e.g. Stimpy is a cat |= Stimpy is not a
poodle). In this section, we describe the theory of Natural
Logic proposed by [4, 2].

The basic idea of MacCartney et al’s theory is that the
semantic relation between sentences can be derived from the
semantic relations of edits (substitution, deletion and inser-
tion) from T to H. The fundamental assumption of the
theory is compositionality: (some of) the entailments of a
compound expression are a function of the entailments of
its parts. They defined the seven types of semantic relations
for edits: equivalence (a ≡ b if a = b), forward-entailment
(a < b if a ⊂ b), backward-entailment (a = b if b ⊃ a),
negation (a ∧ b if a ∩ b = ϕ ∧ a ∪ b = U)2, alternation (a | b
if a∩ b = ϕ∧a∪ b ̸= U), cover (a∪b if a∪ b ̸= ϕ∧a∪ b = U),
and independence (a # b otherwise).

Semantic relations provided by edits are projected onto
other relations depending on their contexts using projec-
tion rules. For example, in a scope of negation, forward-
entailment is projected onto backward-entailment (e.g soccer
< sports, I didn’t play soccer. = I didn’t play sports.). Other
linguistic expressions such as logical connectives and quan-
tifiers also projects semantic relations. A semantic relation
between sentences is derived by combining the projected se-
mantic relations of edits using composition rules. The rules
are defined as tuples of semantic relations. Let the seven
types of relations be R, ri ∈ R, rj ∈ R, then a composi-
tional rule is represented by ri 1 rj ⇒ r ⊆ R. Some com-
positional rule derive a single relations (e.g. ≡ 1 < ⇒ <),
and others derive more than one semantic relations (e.g.
| 1 | ⇒

∪
{≡,<,=, |,#}). As semantic relation composi-

tion proceeded, semantic relations tend to move toward #
3.

1In an upward-monotone context, replacing a linguistic ex-
pression with a more general expression preserves truth. On
the other hand, in a downward-monotone context, replac-
ing a linguistic expression with a more specific expression
preserves truth.
2U denotes a universe.
3Due to spacial limitations, we can not give all of the com-
position rules. For more details, see [2].
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3. A LATENT DISCRIMINATIVE MODEL
WITH NATURAL LOGIC

Our approach used for the subtasks in RITE-2 is based
on the model proposed by Watanabe et al. [10]. The model
assigns local semantic relations to edits which represent a
transformation from T to H. A valid set of edits represents
an alignment between T and H. Each edit is categorized as
one of three types: substitution, deletion or insertion, and is
given one of the seven semantic relations defined in Natural
Logic described in Section 2. A semantic relation between
T and H is derived from a set of semantic relations of align-
ment edits by using the projection rules and the composition
rules.
The model learns appropriate alignments which are con-

sistent with compositional rules of Natural Logic from only
sentence-level semantic relations, where appropriate align-
ments, their semantic relations and their projections are rep-
resented using hidden variables. We use a log-linear discrim-
inative model with hidden variables to provide conditional
joint probabilities of alignments, their associated semantic
relations, and their projections and a sentence-level semantic
relation.

3.1 Model
The model provides a conditional joint distribution of

alignment edits, their semantic relations, their projected re-
lations and the final semantic relation between T and H as
follows.

p(e, re, r
P
e , rC |x;λ) ∝ exp

(∑
k

Ψk(e, re, r
P
e , rC ,x;λ)

)
(1)

where e = {ei} denotes the variables representing edits, and
each edit ei = ⟨ti,hi⟩ consists of ti, a subset of indices of
units (e.g. words) in T , and hi, a subset of indices of units
in H. An edit corresponds to substitution if ti ̸= ϕ and
hi ̸= ϕ, deletion if ti ̸= ϕ and hi = ϕ, and insertion if ti = ϕ
and hi ̸= ϕ. re represents the set of semantic relations
for e, where rei ∈ re corresponds to the semantic relation
of ei. Since rei is derived without considering its context,
rei can be seen as the semantic relation between ti and hi.
The variables rP

e represents a set of projected semantic re-
lations derived from re, taking into account their contexts.
If an edit is under the scope of negation, a quantifier or a
conditional, then rei is mapped to an appropriate seman-
tic relation rPei based on that context. Therefore rPei can be
seen as the sentence-level semantic relation between T and
the sentence which can be obtained by applying the edit ei
to T . The variables rC denotes a set of semantic relations
derived by combining rP

e , where each rC ∈ rC corresponds
to the result of composition of two semantic relations. Here-
after, we use rCT as the sentence-level semantic relation. Note
that rCT ∈ rC . Each variable r in re, r

P
e and rC can have

seven types of semantic relations described previously. Ψk

in equation (1) is a factor which scores the plausibility of
alignment edits, their semantic relations, etc.
The model uses the following four types of factors to score

the plausible alignment edits, their semantic relations and a
sentence-level semantic relation.

Alignment Factor ΨA(e,x) is used to deal with (unla-
beled) phrase alignment for entailment relation recog-

nition and is defined as ΨA(e,x) = λ · fA(e,x). In
order to provide good alignments, it is necessary to
capture the lexical similarity between words. The fea-
tures used in this factor are mainly (i) surface-based
similarity between alignment units, (ii) semantic re-
latedness of alignment units, which can be extracted
from diverse lexical knowledge databases, and (iii) the
contextual information for an edit.

Alignment Semantic Relation Factor ΨS(e, re,x) is in-
troduced to provide plausibility of a semantic rela-
tion re ∈ re for an alignment edit e ∈ e and is de-
fined as ΨS = λ · fS(e, re,x). Each variable re has
a distribution over the seven types of semantic rela-
tions defined in Natural Logic. In order to classify
semantic relations, not only surface-based similarities,
but also lexical semantic relations play an important
role. In the NatLog system developed by [2], an imple-
mentation of an RTE system of Natural Logic, lexical
resource-derived features (e.g. WordNet, NomBank,
etc.), string similarity features, and lexical category
features are used. For this factor, we exploit diverse
lexical resources to provide informative features for
classifying semantic relations of edits.

Projection Factor ΨP (re, r
P
e ,x) provides an appropriate

projection from re to rPe by considering the context of
e, and is defined by ΨP (re, r

P
e ,x) = λ · fP (re, r

P
e ,x).

This factor captures the effects of monotonicity (e.g.
upward, downward). Given re and its contexts, the se-
mantic relation of the projected variable rPe is uniquely
determined using the monotonicity rules of [2].

Composition Factor ΨC(r
C
i−1, r

P
e , rCi ,x) scores tuples of

semantic relations, and is defined by ΨCi(r
C
i−1, r

P
e , rCi ,x) =

λ · f(rCi−1, r
P
e , rCi ,x). In this factor, we use the com-

position rules used in [2] with some modification. We
set the derived semantic relations to independence (#)
for the rules which derive more than one semantic re-
lations. Therefore, as with ΨP , given two semantic
relations rCi−1 and rPe , the joined relation of the vari-
able rCi is uniquely determined.

An overview of the model is shown in Figure 1. In this
figure, we show the factor graph constructed by the model
for a pair of sentences in Japanese. Our model is divided
by three layers: the alignment layer, the projection layer
and the composition layer. First, in the alignment layer,
the model scores possible alignments using ΨA and ΨS . For
alignment units, we use bunsetsu which is a reasonable unit
for Japanese linguistic analysis. A bunsetsu is a chunk-like
unit that consists of one or more content words and zero
or more functional words. A set of possible alignments are
obtained using an extended MANLI algorithm [3].

Next, for each alignment obtained by the alignment al-
gorithm, we construct a factor graph as shown in Figure 1.
The factor graph has variables for alignments, projected re-
lations, joined relations, and the factors defined previously.
In the projection layer, semantic relations of alignments are
projected by ΨP , and finally a sentence-level semantic rela-
tion is obtained in the composition layer using the projected
relations and composition rules encoded in ΨC .

In inference, since variables related to ΨP and ΨC are
uniquely determined if re is given, the model derives the best
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６月２９日の　  大飯原子力発電所の　再稼働に対する        抗議行動の　　 参加者に!

大飯原発再稼働の　抗議活動に　 参加した　  人は　 いないというのは　誤りである。 

国会議員が　含まれていた。 
⊏
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⊏
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T: The attendance of the protest against reactivation of Oi Nuclear Power Plant on June 29 included legislators. 
H: It is wrong that there were no people who attended the protest for reactivating Oi Nuclear Power Plant.

⊏

⊏
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⊏
⊏ ⊏

|

|ΨC ΨC

Figure 1: An overview of the model.

alignments, their semantic relations, and a sentence-level se-
mantic relation simultaneously. In training, the parameters
of the model are updated so as to derive alignments and their
semantic relations which derive the correct sentence-level se-
mantic relation based on the composition rules of Natural
Logic.

3.2 Learning and Inference of the Model
The parameters λ of the model were trained from sentence-

level semantic relations via marginal-likelihood maximiza-
tion Lλ =

∑
n log p(rCT = ln|xn;λ).

The partial differential of the objective function is

∂L

∂λk
=
∑
n

(
∂

∂λk
log

∑
⟨e,re⟩∈E

∑
r:rC

T
=l

exp

(∑
k

Ψk(e, re, r
P
e , rC ,x)

)
− ∂

∂λk
log Z̃(x)

)
(2)

where edits e, their semantic relations re, projected seman-
tic relations rP

e and joined relations excluding the sentence-
level semantic relation are all hidden variables.
In optimization, only the parameters in ΨA and ΨS are

updated, and the parameters in ΨP and ΨC are left to ini-
tial values. In order to update the parameters, we need to
calculate marginal probabilities of the alignments. We use
only N-bests provided by the extended MANLI algorithm
proposed by [10] to calculate approximate marginal prob-
abilities which are derived from an approximate partition

function Z̃(x) instead of the exact partition function Z(x),

The inference phase also uses the extended MANLI algo-
rithm to estimate the most plausible assignments of align-
ments, their semantic relations, their projections and their
compositions.

We need to convert the NL relations to corresponding re-
lation in binary and multiclass subtasks in RITE-2. In train-
ing and inference of the model, for the BC subtask, ExamBC
subtask and UnitTest, ≡ and < is converted to Y and N oth-
erwise (=, ∧, |, ∪ and #). For the MC subtask, ≡ is mapped
to B, < is mapped to F, ∧ and | are mapped to C, and ∪

and # are mapped to I.

4. SETTINGS
For the factors ΨP and ΨC , we initialized the weights to

0.0 if the semantic relation tuple is covered by our projec-
tion rules and composition rules, and −∞ otherwise. For
the factors ΨA and ΨS , we set initial weights to some fea-
tures. In training of the model, we update the parameters
in ΨA and ΨS , and the parameters in ΨP and ΨC are left to
the initial values. Parameter updating was performed using
stochastic gradient descent (SGD), and the number of itera-
tions was set to 2. Also, we applied L2 regularization. As for
the alignment algorithm, the number of iterations was set to
40, and the number of N-bests was set to 10. For each edit
type, we restricted the maximum size of units: only allows
one-to-one for substitution, allows at most three units for
insertion and deletion edits. Also, we constrained the types
of semantic relations for each edit type. Substitution edits
can have one of the five types of semantic relations: ≡, <,
=, ∧ and | with an exception. If the lemma sequences of the

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

533



BC MacroF1 Acc. Y-F1 Y-Prec. Y-Rec. N-F1 N-Prec. N-Rec.

THK-02 (unsubmitted) 58.34 58.69 62.16 50.49 80.86 54.51 75.50 42.66
THK-01 52.40 53.28 45.92 44.65 47.27 58.87 60.18 57.63

Baseline-01 62.53 63.93 55.28 57.63 53.13 69.78 67.91 71.75
Top 80.49 81.64 75.76 84.95 68.36 85.22 79.95 91.24

ExamBC MacroF1 Acc. Y-F1 Y-Prec. Y-Rec. N-F1 N-Prec. N-Rec.

THK-02 (unsubmitted) 46.59 46.65 48.38 38.62 64.74 44.80 61.39 35.27
THK-01 43.77 62.28 11.52 61.11 6.36 76.03 62.33 97.45

Baseline 54.77 56.47 45.98 44.15 47.98 63.55 65.38 61.82
Top 67.15 70.31 56.96 64.71 50.87 77.34 72.76 82.55

UnitTest MacroF1 Acc. Y-F1 Y-Prec. Y-Rec. N-F1 N-Prec. N-Rec.

THK-02 (unsubmitted) 56.59 73.86 83.93 91.16 77.83 29.21 21.67 44.83
THK-01 53.26 71.37 82.35 89.94 75.94 24.18 17.74 37.93

Baseline 51.70 86.31 92.58 88.41 97.17 10.81 25.00 6.90
Top 77.77 90.87 94.84 94.39 95.28 60.71 62.96 58.62

Table 1: Results on the BC subtask, ExamBC subtask and UnitTest formal run data (JA).

two bunsetsus are the same, the edit can have only ≡. Dele-
tion edits and insertion edits can have < and = respectively
with exceptions. They can have | if the head of bunsetsu
matches an entry in the list of counter-factive expressions
4, and they can have ≡ if the head of bunsetsu matches an
entry in the list of less-informative expressions 5.
The features used in the model are the same as those used

in [10].

5. RESULTS
We submitted only one run for each subtask (denoted as

THK-01). In the THK-01 setting, for each subtask, the
model was trained with the corresponding development data
of each subtask. In this paper, we additionally report the
results (denoted as THK-02) where the model was trained
with the MC-dev data and tested on the formal run data
of the binary-class subtasks (BC subtask, ExamBC subtask
and UnitTest). Since more fine-grained semantic relations
provide more effective information for estimating plausible
alignments, we expect the model to achieve performance im-
provements.
Table 1 shows the results on the dataset of the binary-class

subtasks (BC subtask, ExamBC subtask and UnitTest). We
achieved slightly better performances compared to a ma-
chine learning-based baseline in UnitTest, however defeated
in the BC subtask and the ExamBC subtask. The reason of
the insufficient performance is that we did not include shal-
low word overlapping features in the model. Simple word
overlap features are known to have strong correlations with
entailment relations (e.g. [5]).
As described in Section 3, we regarded both ≡ and <

as correct if a pair of sentence has an entailment relation
(i.e. “Y”). However, in this case, only the “Y” label does
not provide sufficient information to discriminate between
equivalence and entailment. Since the examples of the MC
dataset have more fine-grained semantic labels, we expect
our model to achieve performance improvements. The re-
sults of THK-02 in the table suggest that more fine-grained

4A hand-crafted list which contains 13 entries.
5As with the list of counter-factive expressions, the list was
hand-crafted, and contains 30 entries.

semantic relations are effective for estimating better param-
eters in alignment.

Table 2 shows the result on the MC formal run data. Al-
though the performance of our model is insufficient com-
pared to the top system, our model achieved the highest
performance on contradiction detection. We found out that
the model assigned ∧ or | relation to alignments which have
a unit with negation expression such as nai with higher re-
call. Since our strategy of the compositional model combines
local semantic relations of alignments, the alignments that
have opposite relation such as ∧ and | guided the model to
infer contradiction relations successfully.

Table 4 shows the confusion matrix of the results on the
MC subtask formal run data. Since the system outputs not
only forward-entailment relations, but also “reverse” entail-
ment relations, “R”is included in the table. Most of the pairs
of bi-directional entailment fell into the forward-entailment
relation because the model failed to assign the ≡ relation
to delete or insert meaning-less expressions such as ⟨ 主に
omoni “mainly”⟩, ⟨俗に zokuni “commonly”⟩, ⟨一種 isshu “a
kind of”⟩, etc. Since our model assigns forward-entailment
to deletion edits and reverse-entailment to insertion edits by
default, the results left from bi-directional entailment.

The model tends to frequently output forward-entailment
relations due to the training strategy of the model. In train-
ing, all of sets of alignments which infer forward-entailment
are regarded as true if the label of an examples is forward-
entailment, and there are many possible alignments in such
cases. As a result, the model trained by such strategy can
easily output forward-entailment relations of alignments even
for very dissimilar units.

gold \system B F R C I Total

B 9 32 8 1 20 70
F 0 171 1 2 31 205
C 1 32 3 12 13 61
I 2 123 2 8 77 212

Total 12 358 14 23 141 548

Table 4: Confusion Matrix on the MC subtask data
(JA).
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MC MacroF1 Acc. B-F1 B-Prec. B-Rec. F-F1 F-Prec. F-Rec. C-F1 C-Prec. C-Rec. I-F1 I-Prec. I-Rec.

THK-01 30.98 49.09 21.95 75.00 12.86 60.75 47.77 83.41 28.57 52.17 19.67 43.63 54.61 36.32

Baseline 26.61 45.44 0.00 0.00 0.00 56.18 43.01 80.98 5.41 15.38 3.28 44.88 54.36 38.21
Top 59.96 69.53 67.18 72.13 62.86 76.47 76.85 76.10 21.15 25.58 18.03 75.06 70.54 80.19

Table 2: Results on the MC subtask formal run data (JA).

Category Y:Prec Y:Rec Y:F1 N:Prec N:Rec N:F1

case alternation 100.00 ( 7/ 7) 100.00 ( 7/ 7) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00
inference 0.00 ( 0/ 0) 0.00 ( 0/ 2) 0.00 0.00 ( 0/ 2) 0.00 ( 0/ 0) 0.00

spatial 100.00 ( 1/ 1) 100.00 ( 1/ 1) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00
implicit relation 100.00 ( 3/ 3) 16.67 ( 3/ 18) 28.57 0.00 ( 0/ 15) 0.00 ( 0/ 0) 0.00

list 100.00 ( 3/ 3) 100.00 ( 3/ 3) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00
disagree:lex 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00 100.00 ( 1/ 1) 50.00 ( 1/ 2) 66.67

synonymy:phrase 100.00 ( 24/ 24) 68.57 ( 24/ 35) 81.36 0.00 ( 0/ 11) 0.00 ( 0/ 0) 0.00
meronymy:lex 100.00 ( 1/ 1) 100.00 ( 1/ 1) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00

apposition 0.00 ( 0/ 0) 0.00 ( 0/ 1) 0.00 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00
modifier 100.00 ( 40/ 40) 95.24 ( 40/ 42) 97.56 0.00 ( 0/ 2) 0.00 ( 0/ 0) 0.00

transparent head 0.00 ( 0/ 0) 0.00 ( 0/ 1) 0.00 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00
synonymy:lex 100.00 ( 10/ 10) 100.00 ( 10/ 10) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00

nominalization 0.00 ( 0/ 0) 0.00 ( 0/ 1) 0.00 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00
coreference 0.00 ( 0/ 0) 0.00 ( 0/ 4) 0.00 0.00 ( 0/ 4) 0.00 ( 0/ 0) 0.00

disagree:phrase 0.00 ( 0/ 14) 0.00 ( 0/ 0) 0.00 100.00 ( 11/ 11) 44.00 ( 11/ 25) 61.11
temporal 100.00 ( 1/ 1) 100.00 ( 1/ 1) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00

disagree:modality 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00 0.00 ( 0/ 0) 0.00 ( 0/ 1) 0.00
entailment:phrase 100.00 ( 38/ 38) 84.44 ( 38/ 45) 91.57 0.00 ( 0/ 7) 0.00 ( 0/ 0) 0.00
disagree:temporal 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00 100.00 ( 1/ 1) 100.00 ( 1/ 1) 100.00

hypernymy:lex 100.00 ( 3/ 3) 100.00 ( 3/ 3) 100.00 0.00 ( 0/ 0) 0.00 ( 0/ 0) 0.00
scrambling 100.00 ( 14/ 14) 93.33 ( 14/ 15) 96.55 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00

clause 100.00 ( 13/ 13) 92.86 ( 13/ 14) 96.30 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00
relative clause 100.00 ( 7/ 7) 87.50 ( 7/ 8) 93.33 0.00 ( 0/ 1) 0.00 ( 0/ 0) 0.00

Table 3: Detailed results on UnitTest data for each category.

Table shows the detailed results on UnitTest data. The
proposed model could correctly answer subsets of the exam-
ples categorized into“disagree lex”, “disagree temporal” and
“disagree phrase”. However, overall, there are many false
positives of “N” examples especially in the categories of “im-
plicit relation”,“synonymy phrase”and“entailment phrase”.
In the “implicit relation” examples, t2 has some specific in-
formation compared to t1, however, the information can be
complemented with some information in t1. Since the model
has no mechanism of dealing with such complementation,
many examples are misclassified. Many examples of syn-
onymy phrase and entailment phrase are misclassified be-
cause they require phrase alignment, however our alignment
algorithm does not support it.

6. CONCLUSION
This paper described the THK system that participated in

the BC subtask, MC subtask, ExamBC subtask and UnitTest
in NTCIR-10 RITE-2. Our model has ability to predict local
correspondences (alignments) between sentences, the seman-
tic relations, and the sentence-level semantic relation simul-
taneously. The model can be trained from only sentence-
level semantic relations by using marginal-likelihood maxi-
mization. The results of our model were modest all in all,
however the system achieved the best performance in de-
tecting contradiction relations.
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