YLAB@RU at Spoken Term Detection Task in NTCIR-10 SpokenDoc-2

Iori Sakamoto, Kook Cho, Masanori Morise, Yoichi Yamashita (Ritsumeikan University)

Abstract:

This paper describes improvement of the STD method which is based on the vector quantization (VQ). Spoken documents are represented as sequences of VQ codes, and they are matched with a text query to be detected based on the V-P score which measures the relationship between a VQ code and a phoneme. The matching score between VQ codes and phonemes is calculated after normalization for each phoneme in a query term to avoid biased scoring particular phonemes.

1. Objectives

-To improve the detection performance of unknown words for the spoken term detection (STD).

2. STD Method Based on Vector Quantization

- To represent spoken documents as sequences of VQ codes .

> Conventional methods represent spoken documents as sequences of sub-words, such as phonemes, to detect unknown words.

2-1. V-P score

- The V-P score s(v, p) measures the cooccurence of a VQ code v and a phoneme p.

$$s(v, p) = \log\left(\frac{C_v(p)}{N_v}\right) - \log\left(\frac{C_v(p_{best})}{N_v}\right)$$

 $C_{n}(p)$: the number of frames which are labeled with a

- phoneme p and are quantized into a VQ code v N_{v} : the total number of frames of v
- P_{best} : the phoneme which appears most in v

- Acoustic features for VQ

> 60-dimensional parameters including 12 MFCCs of 2 preceding and 2 following frame as well as the current frame

2-2. Term detection

- The distortion of phoneme duration D(i) is defined based on the average frame length of a phoneme.

$$D(i) = \frac{1}{K} \sum_{j=1}^{K} \left(\frac{d_{i}(p_{j})}{L_{i}} - \frac{d_{d}(p_{j})}{L_{d}} \right)^{2}$$

- K : phoneme length of the query term
- $d_i(p)$: the average frame length of a phoneme p
- $d_{d}(p)$: the frame length of a phoneme p in the detected segment : estimated total duration of the detected term
 - $L_l L_d$: total duration of the detected segment

- The unified score P(i) is defined based on matching score and distortion of phoneme duration

$$P(i) = P_{\overline{s}(i)} - P_{D}$$

 $P_{\overline{z}}(i)$: matching score normalized based on statistical distribution of matching scores for all candidate segments

 $P_{n}(i)$: the distortion of phoneme duration normalized based on statistical distribution

3. Proposed Method : Intra-phone normalization

- The matching score N(i) is normalized by averaging scores within a phoneme.

$$\overline{N}(i) = \frac{1}{K} \sum_{j=1}^{K} \left(\frac{1}{N} \sum_{m=m_j}^{m_j+n_j-1} s(v_m, p_j) \right)$$

- N: the length of candidate segment
- n_j : the number of frames matching with *j*-th phoneme of the query term m_i : the starting frame of the segment *j*-th phoneme

4. Evaluation

- Evaluation 1

Spoken documents: 177 spoken lectures in the CORE set of CSJ

Query term: 20 words (The average phoneme length is 11.0.) VQ size: 1024

т

able 1: Comparison of STD methods.				
method	F-measure[%]	MAP[%]		
haaalina	60.0	50.0		

baseline	60.9	50.0
old version	59.3	61.1
proposed	65.9	67.5

Figure 4: Recall and precision of STD methods.

- Evaluation 2 (formal run)

We used 1-best results of unmatched_syllable that were provided by the task organizer to train the V-P score definition.

methoù in tre formar fun.					
	F-measure[%]		MAP[%]		
	(max)	(spec.)			
baseline(BL-3)	39.36	39.16	39.3		
proposed	24.10	24.04	22.1		

Conclusion

- The score normalization improves the STD performance by 6% of F-measure

- The proposed method shows the low performance for SDPWS data in the formal run

- To improve the performance

> To train V-P score using transcription of similar speaker