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ABSTRACT
In recent years, demands for distributing or searching mul-
timedia contents are rapidly increasing and more effective
method for multimedia information retrieval is desirable. In
the studies on spoken document retrieval systems, much re-
search has been presented focusing on the task of spoken
term detection (STD), which locates a given search term in a
large set of spoken documents. One of the most popular ap-
proaches performs indexing based on the sub-word sequence
which is converted from the recognition hypotheses from
LVCSR decoder for considering recognition errors and OOV
problems. In this paper, we propose acoustic dissimilarity
measures for improved STD performance. The proposed
measures are based on a feature sequence of distance-vector
representation, which consists of all the distances between
two possible combinations of distributions in a set of sub-
word unit HMMs and represents a structural feature. The
experimental results showed that our two-pass STD system
with new acoustic dissimilarity measure improve the per-
formance compared to the STD system with a conventional
acoustic measure.
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1. INTRODUCTION
Spoken term detection (STD) is a task which locates a

given search term in a large set of spoken documents. A
simple approach for STD is a textual search on Large Vocab-
ulary Continuous Speech Recognizer (LVCSR) transcripts.
However, the performance of STD is largely affected if the
spoken documents include out-of-vocabulary (OOV) words
or the LVCSR transcripts include recognition errors for in-
vocabulary (IV) words. Therefore, many approaches using
a subword-unit based speech recognition system have been
proposed[2, 4, 5, 9]. The keyword spotting methods for

subword sequences based on dynamic time warping(DTW)-
based matching or n-gram indexing approaches have shown
the robustness for recognition errors and OOV problems.
Also, hybrid approaches with multiple speech recognition
systems of word-based LVCSR and subword-unit based speech
recognizer have shown the further performance improvement
for both IV and OOV query terms[10, 11, 12].

In this paper, we introduce a keyword verifier which uti-
lizes new acoustic dissimilarity measures based on different
types of local distance metrics derived from a common set of
subword-unit acoustic models for improved STD. In general,
the STD approaches based on subword sequences assumes
a predefined local distance measure between subword units
and some cost parameters. However, the performance is de-
graded if the automatic transcripts have many recognition
errors including insertions and deletions as in the recordings
of spontaneous speech. To address the lack of acoustic infor-
mation in subword sequences which are derived from LVCSR
or subword-unit based speech recognition results, we extend
the local distance measure to account for state-level acous-
tic dissimilarity based on the subword-unit HMMs which are
commonly used for speech recognition systems. We also in-
troduce a keyword verifier which aims at the detailed match-
ing between query term and subword sequences based on
the proposed state-level acoustic dissimilarity measures. It
should be noted that our approach is different from the hier-
archical approach which uses frame-level acoustic match[9]
which consumes time and is solely based on the subword-
based (N-best) transcripts. Thus, it’s easy to extend our
method by hybrid speech recognition approaches and fast
indexing with table lookup methods.

Related works using the acoustic similarity for STD task
are roughly divided into two types: STD systems for text
query input (e.g. [3]) and those for spoken query input
or unsupervised spoken keyword spotting (e.g. [6, 7, 8]).
Typically, the former systems use certain information about
confusability between subwords. In [11], a syllable-level dis-
tance measure based on the Bhattacharyya distance derived
from syllable-unit HMMs is used. Though our proposed
acoustic measures is also based on subword-unit HMMs,
the state-level local distance instead of subword-level one
is used for evaluating the match between query and sub-
word sequences. Also, new feature vector representation for
each state in subword-unit HMMs is constructed based on
the distances of all possible pairs of distributions in a set
of subword-unit HMMs. This feature representation is re-
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lated to the idea of using an invariant structural feature for
removing acoustic variations caused by non-linguistic fac-
tors[13, 14] and it is expected that the proposed feature is
effective for erroneous transcripts. Recently, similar idea
of using structural feature for acoustic dissimilarity estima-
tion is effectively applied to the systems of latter type. In
[7], a speech segment is represented as the posteriorgram
sequence of GMM or HMM states, and evaluate the simi-
larity between query term and speech segments by using a
self similarity matrix. The result showed the robustness to
the various language conditions that are different from the
training data.

2. PROPOSED SPOKEN TERM DETECTION
METHOD

2.1 Proposed system overview
Overview of our proposed STD system is shown in Figure

1. The system adopts two-pass strategy for both efficient
processing and improved STD performance against recogni-
tion errors. The first pass performs the DTW-based keyword
spotting as described in Section 2.2. The second pass is a
keyword verifier which performs two kinds of detailed scor-
ing (rescoring) for each candidate segment found in the first
pass. The detailed procedure for STD is as follows.

1. Perform the 1st-pass keyword (query term) spotting
based on the DTW-based matching with an asymmet-
ric path constraint shown in Figure 2, and obtain a set
of candidate segments.

2. Perform the DTW-based matching for the HMM state
sequences between query and candidate segments with
the state-level local distance measure defined in Sec-
tion 2.2.2 and a symmetric path constraint shown in
Figure 3. This step yields a dissimilarity score ScoreBD

for each candidate segment.

3. Calculate the acoustic dissimilarity score ScoreDDV

using a distance-vector representation as feature (de-
scribed in Section 2.3.1 and 2.3.2).

4. Combined score is calculated for each candidate seg-
ment and the score is compared with a threshold for a
final decision.

Score fusion = α · ScoreBD + (1− α) · τ · ScoreDDV

where α(0 ≤ α ≤ 1) is a weight coefficient and τ is a
constant for adjusting the score range. Figure 4 shows
the concept of calculating the combined score.

To reduce the computational cost, the local distance values
required in Step 1-3 are prepared beforehand by using a set
of subword-unit HMM parameters.

2.2 Keyword Spotting System (1st Pass)

2.2.1 Keyword Spotting
Our baseline system adopts a DTW-based spotting method

which performs matching between subword sequences of query
term and spoken documents and outputs matched segments.
In the baseline systems for both of NTCIR-9 SpokenDoc
and NTCIR-10 SpokenDoc2 STD subtasks [3, 1], a similar
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method with the local distance measure based on phoneme-
unit edit distance is used. In our system, the local distance
measure is defined by a syllable-unit acoustic dissimilarity
as described in Section 2.2.2, and a look-up table is precal-
culated from an acoustic model.

At the preprocessing stage, N-best recognition results for
a spoken document archive are obtained by word-based and
syllable-based speech recognition systems with N-gram lan-
guage models of corresponding unit. Then, the word-based
recognition results are converted into subword sequences.

At the stage of STD for query input, the query term is con-
verted into a syllable sequence, and the DTW-based word
spotting with an asymmetric path constraint as shown in
Figure 2 is performed. If the term consists of in-vocabulary
(IV) words, word-based recognition results (converted into
syllable sequence) are used. If the term consists of out-of-
vocabulary (OOV) words, syllable-based recognition results
are used. Finally, a set of segments with a spotting score
(dissimilarity) less than a threshold is obtained as the can-
didate segments for the second pass.

2.2.2 Acoustic dissimilarity based on subword-unit
HMM

In [11], the local distance measure is based on the Bhat-
tacharyya distance between two distributions and derived
from the acoustic model parameters of syllable-unit HMMs.
The Bhattacharyya distance between two distributions P
and Q is expressed as follows when they are multivariate
Gaussian distributions.

BD(P,Q) =
1

8
(µP − µQ)

( ∑
P +

∑
Q

2

)−1
(µP − µQ)t

+
1

2
log

(
|(
∑

P +
∑

Q)/2|
|
∑

P |1/2|
∑

Q |1/2

)
where µ· is the mean vector and

∑
· is the covariance matrix

of each distribution, respectively.
Since each subword-unit HMM has multiple states and

state-level distribution is modeled as Gaussian mixture model
(GMM) in general, the definition of distance between two
HMMs is not straightforward. Therefore, first we define the
between-state distance between two GMMs P and Q as

DBD(P,Q) = min
u,v

BD(P {u}, Q{v}) (1)

where the superscript notations u and v denote a single
Gaussian component of each GMM.

Then, we calculate the subword-level distance Dsub(x, y)
by the DTW-based matching between two HMM state se-
quences which correspond to two subwords x and y, respec-
tively, with the local distance defined in equation (1) and
a symmetric DTW path constraint shown in Figure 3. The
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Figure 1: Overview of proposed STD system

distanceDsub(x, y) is used as the local distance of the DTW-
based matching at the first pass (Step 1).

2.3 Keyword Verifying System (2nd Pass)

2.3.1 Distance vector representation
The distance DBD(P,Q) in equation (1) only depends on

the parameters of two distributions which correspond to a
pair of aligned states in DTW-based matching of HMM state
sequences. Like a structural feature representation proposed
in [13] and a self similarity matrix in [7], we can consider
a feature representation for each HMM state based on the
distances between a target state and all states in a set of
subword-unit HMMs. It is expected that such structural fea-
ture can estimate more robust acoustic dissimilarity measure
for comparing the subword sequences including recognition
errors.
Let the P = {Ps}(s = 1, 2, · · · , S) be a set of all distribu-

tions in subword-unit HMMs. We define a distance vector
for the HMM state s as

φ(s) = (DBD(Ps, P1),DBD(Ps, P2), · · · ,DBD(Ps, PS))
T

(2)
We refer to this vector representation as distribution-distance
vector (DDV).

2.3.2 Keyword verifier based on distance vector se-
quences

We can replace the local distance measure used by the
DTW-based matching in Step 2 with a new dissimilarity
measure based on the DDV representation in equation (2).
To simplify the calculation of dissimilarity score using the
DDV representation, we utilize the alignment between two
state sequences obtained by the DTW process in Step 2.

Let the F = c1, c2, · · · , ck, · · · , cK be the state-level align-
ment obtained in Step 2 and the ck = (ai, bj) represents the
correspondence between i-th state in HMM state sequence
A = a1, a2, · · · , aI and the j-th state in HMM state se-
quence B = b1, b2, · · · , bJ . In our proposed system, two
state sequences correspond to a query and candidate seg-
ment respectively, which are identical to the input for the
DTW-based matching in Step 2. We investigate the follow-
ing three types of definitions as the dissimilarity score for a
candidate segment.

ScoreDDV L1 =

∑K
k=1

∑S
s=1 |ψs(ck)|
K · S (3)

ScoreDDV L2 =
1

K

K∑
k=1

{
1

S

S∑
s=1

|ψs(ck)|2
}1/2

(4)

ScoreDDV L1Max =
max1≤k≤K

∑S
s=1 |ψs(ck)|

K · S (5)

where ψs(ck) is the s-th element of the vector φ(ai)−φ(bj).
We use these definitions as a dissimilarity score because
these scores take a value closer to zero as two state sequences
A and B become acoustically similar. ScoreDDV L1 repre-
sents a normalized score of accumulated L1 norms between
two DDV sequences, while ScoreDDV L2 represents a normal-
ized score of accumulated L2 (Euclidean) norms (although
not strictly L2 norm since a normalization term 1/S is in-
cluded). On the other hand, ScoreDDV L1Max uses the max-
imum value of all L1 norms in a DDV sequence and thus it
emphasizes the most dissimilar part in a subword sequence.

Figure 4 shows the concept of the detailed scoring process
at the second pass (Step 2-4 described in Section 2.1).
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3. EVALUATION

3.1 Experimental setup
We prepared a set of subword-unit HMMs which are used

in calculating the acoustic dissimilarities between subwords
and states. We used a training set which is identical to the
condition for training acoustic models used in NTCIR-10
SpokenDoc2 baseline system. Table 1 shows the specifica-
tions of the acoustic model used for calculating the distance
between the distributions. Each HMM has five states and
three output distributions for a part of mora categories (/a/,
/i/, /u/, /e/, /o/, /N/, /q/, /sp/, /silB/, and /silE/), seven
states and five output distributions for the other mora cat-
egories.
Two kind of acoustic models are used for NTCIR tasks:

SHZU-1 Syllable-unit HMMs that were trained using the
CSJ corpus [16], while initial HMMs were trained us-
ing two commonly-used read speech databases: ASJ-
PB(phonetically balanced sentences of continuous speech
uttered by 30 males and 34 females) and JNAS(Japanese
Newspaper Article Sentences, 15911 sentences by male
speakers and 15860 sentences by female speakers).

SHZU-2 Syllable-unit HMMs that were trained by the flat
start method using only the CSJ corpus.

We used both of word-based and syllable-based reference
automatic transcriptions (“REF-WORD-MATCHED” and
“REF-SYLLABLE-MATCHED”) distributed by organizers.
The 10-best hypotheses are used for the first pass described
in Section 2.2.1.
Table 2 shows the speech recognition performance for CSJ

CORE lectures using three acoustic models: the reference
(triphone) acoustic model (RCG-AM) used by NTCIR-10
organizers for providing automatic transcriptions and the
syllable-unit acoustic models for providing the distance ta-
bles of acoustic dissimilarity (SHZU1-AM and SHZU2-AM)
in our system. Note that SHZU1-AM and SHZU2-AM are
only used for calculating acoustic dissimilarity and not used
for preparing automatic transcriptions.

3.2 Evaluation results

3.2.1 Comparison of dissimilarity measures
Table 3 and Figure 5 show the performance of baseline

and our systems for NTCIR9 SpokenDoc STD subtask. The

Table 1: Specifications of the HMM used in calcu-
lating the distance between the distribution

Category/Unit 133 syllables(morae)
# of states 7 or 5

# of output states 5 or 3
Output distribution 32 mixture, normal

(diagonal covariance matrix)
Feature parameter 38 dimensions (MFCC +∆MFCC

+∆∆MFCC +∆Power +∆∆Power)

Table 2: Speech recognition performance for CSJ
CORE lectures[%]. ”Syl.Corr.” and ”Syl.Acc.”
denotes the syllable-based correct rate and accu-
racy, respectively. In case of word-based language
model (LM), all words were converted to syllable
sequences.

Word-based LM Syllable-based LM
AM Syl.Corr. Syl.Acc. Syl.Corr. Syl.Acc.

RCG-AM
(triphone)

86.5 83.0 81.8 77.4

SHZU1-AM
(syllable)

82.6 78.3 75.2 72.3

SHZU2-AM
(syllable)

82.5 78.2 75.1 72.1

NTCIR baseline and our baseline system (1st pass only)
are compared with the proposed methods which use three
types of DDV-based score definitions described in Section
2.3.2 at the second pass. Note that our baseline system is
similar to the organizer’s baseline system in that they are
based on the DTW-based matching of subword sequences.
Major differences are as follows: the organizer’s baseline
result is based on the transcriptions of REF-SYLLABLE
[3] and uses phoneme-based edit distance, while our base-
line (1st pass) system is based on the hybrid use of the
REF-SYLLABLE and REF-WORD transcriptions and uses
syllable-based acoustic dissimilarity. These results show that
the two-pass method with a ScoreDDV L1Max outperforms
the others. So the proposed system with ScoreDDV L1Max

was used for the NTCIR-10 evaluations described in the next
subsection.

3.2.2 NTCIR-10 STD task results
The evaluation results for CSJ (large-size) task are shown

in Table 4 and Figure 6. The decision point for calculating

Table 3: Spoken term detection performance of
NTCIR-9 SpokenDoc STD subtask[%].

Recall Precision F-measure MAP
NTCIR-9 baseline∗ NA NA 52.7 59.5

Our baseline
50.6 80.1 62.0 63.2

(1st pass only)
ScoreDDV L1 61.2 70.9 65.7 62.4
ScoreDDV L2 58.1 77.3 66.3 62.7

ScoreDDV L1Max 58.1 85.2 69.1 63.5

* SpokenDoc STD subtask (formal-run of CORE set)[3]

Proceedings of the 10th NTCIR Conference, June 18-21, 2013, Tokyo, Japan

651



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P

r

e

c

i

s

i

o

n

[

%

]

Recall[%]

baseline

(1st pass only)

ScoreDDV_L1

ScoreDDV_L2

ScoreDDV_L1Max
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“spec. F” was decided by the result of the CORE formal-run
query set in the NTCIR9 SpokenDoc STD subtask. The pa-
rameters (1st pass threshold, weight coefficient and 2nd pass
threshold) were adjusted for each set of IV and OOV queries
to attain the best F-measure value for the final output in the
2nd pass.
The evaluation results for SDPWS (moderate-size) task

are shown in Table 5 and Figure 7. The decision point for
calculating “spec. F” was decided by the result of the NT-
CIR10 SpokenDoc2 SDPWS dry-run query set.
The curves of “baseline1-3” show the results provided by

organizers [1]. Baseline systems perform the DTW-based
word spotting with phoneme-based edit distance. The “base-
line1” system calculates over the syllable-based transcrip-
tions, “baseline2” system calculates over the word-based
transcriptions, and “baseline3” system calculates over the
word-based and syllable-based transcriptions.
Table 5 shows that our two-pass systems (SHZU-1 and

SHZU-2) significantly improve the STD performance com-
pared with one-pass only systems (SHZU-1(1pass) and SHZU-
2(1pass)) which are similar to the organizer’s baseline3 sys-
tem. The SHZU-1 system attains a slightly better perfor-
mance in terms of F-measure and MAP than the SHZU-2
system in Table 5, while the SHZU-1 system is slightly worse
than the SHZU-2 system in Table 4. One reason for only
a slight difference between the SHZU-1 and SHZU-2 STD
performances is explained by insignificant difference in the
speech recognition performance between two acoustic mod-
els used in these systems as shown in Table 2.
The results show that the performance of “baseline2” and

“baseline3” are better than our proposed methods, espe-
cially for SDPWS task. One of the reasons for this is thought
to be the wrong use of the transcriptions provided by the
NTCIR organizers because the difference between the orga-
nizer’s baseline3 system and our systems (1st. pass only) are
very similar but their results differ significantly. The main
difference between the baseline3 and our system (1st. pass
only) are only the definition of local distance for the DTW

Table 4: STD results for CSJ (large-size) task
System max F.[%] spec.F[%] MAP

baseline1 42.32 40.71 0.500
baseline2 52.52 48.22 0.507
baseline3 54.25 50.46 0.532

SHZU-1 49.44 47.56 0.423
SHZU-2 51.14 44.20 0.510
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Figure 6: Recall-Precision curves for CSJ (large-
size) task

matching and the unit of subword, that is the phoneme v.s.
the syllable. Also, comparison between the NTCIR10 runs
of organizer’s baseline and our system showed that our pro-
posed method often incorrectly judged the IV query as the
OOV query, while the word-based recognition results are
used for IV queries and syllable-based recognition results
are used for OOV queries in our system. Therefore, we
conducted additional experiments using the REF-WORD-
MATCHED transcription only, which is similar to the or-
ganizer’s baseline2 condition. The bottom lines in Table 5
show the additional results obtained by our systems based on
the REF-WORD-MATCHED transcriptions instead of the
hybrid use of the REF-SYLLABLE-MATCHED and REF-
WORD-MATCHED transcriptions (the upper four SHZU
systems in the middle of the table). The comparison be-
tween two SHZU-1(1st. pass) systems in this table reveals
that only the change of transcriptions (not using REF-SYLLABLE-
MATCHED) greatly improve the STD performance. Ac-
cordingly, our two-pass system attains a performance com-
parable with the baseline2 system, while the performance
of the 1st. pass is still worse, and the performance ap-
proached to those of the baseline3 system. These result
seem promising since the speech recognition performances
of used acoustic models (SHZU1-AM and SHZU2-AM) are
worse than the RCG-AM used for preparing the transcrip-
tions by organizer’s, but our two-pass systems still improved
the performance.
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Table 5: STD results for SDPWS (moderate-size)
task

System max F.[%] spec.F[%] MAP

baseline1 25.08 24.70 0.317
baseline2 37.58 37.46 0.358
baseline3 39.36 39.16 0.393

SHZU-1(1st pass)+ 25.24 20.85 0.335

SHZU-2(1st pass)+ 24.20 21.63 0.334

SHZU-1 28.62 27.75 0.337
SHZU-2 27.40 23.55 0.319

SHZU-1(1st pass)+# 33.71 - 0.382

SHZU-2(1st pass)+# 32.53 - 0.386

SHZU-1+# 37.85 - 0.359

SHZU-2+# 38.18 - 0.400
∗ The upper four systems (SHZU-1 and SHZU-2) are based
on the hybrid use of the REF-SYLLABLE-MATCHED and
REF-WORD-MATCHED transcriptions, while the bottom
four systems (marked by a superscript #) are based on the
REF-WORD-MATCHED transcription only.
+ These results have not been submitted to the NTCIR-10
formal run and included for reference.

4. CONCLUSIONS
We participated in NTCIR10 SpokenDoc-2 STD task. In

this paper, we proposed a method for evaluating acoustic
dissimilarity between two sub-word sequences based on a
sequence of distance-vector representation, which consists
of all the distances between two possible combinations of
distributions in a set of sub-word unit HMMs and represents
a structural feature.
Since our method is a simple extension of the conventional

DTW-based method, it is straightforward to replace the 1st.
pass with more improved method or to combine with index-
ing techniques (e.g. [11]) for speeding up our STD system.
Also, an automatic estimation of optimal parameters, such
as a score threshold and weight, or score normalization[15]
are necessary to achieve the further improvement and the
robustness for the spoken documents in the real world.
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