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ABSTRACT
Recently, Sakai proposed two methods for determining the topic
set size n for a new test collection based on variance estimates
from past data: the first method determines the minimum n to en-
sure high statistical power [22], while the second method deter-
mines the minimum n to ensure tight confidence invervals [23].
These methods are based on statistical techniques described by Na-
gata [15]. While Sakai [22] used variance estimates based on one-
way ANOVA, Sakai [23] used the 95% percentile method proposed
by Webber, Moffat and Zobel [38]. This paper reruns the experi-
ments reported by Sakai [22, 23] using variance estimates based
on two-way ANOVA [17], which turn out to be slightly larger than
their one-way ANOVA counterparts and substantially larger than
the percentile-based ones. If researchers should choose to “err on
the side of over-sampling” as recommened by Ellis [10], the vari-
ance estimation method based on two-way ANOVA and the results
reported in this paper are probably the ones researchers should
adopt. We also establish empirical relationships between the two
topic set size design methods, and discuss the balance between n
and the pool depth pd using both methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

Keywords
confidence intervals; effect sizes; evaluation; measures; sample
sizes; statistical significance; test collections

1. INTRODUCTION
Recently, Sakai proposed two methods for determining the topic

set size n for a new test collection based on variance estimates from
past data: the first method determines the minimum n to ensure
high statistical power [22], while the second method determines
the minimum n to ensure tight confidence invervals (CIs) [23].
These methods are based on statistical techniques described by Na-
gata [15]. While Sakai [22] used variance estimates based on one-
way ANOVA, Sakai [23] used the 95% percentile method proposed
by Webber, Moffat and Zobel [38]. This paper reruns the experi-
ments reported by Sakai [22, 23] using variance estimates based
on two-way ANOVA [17], which turn out to be slightly larger than
their one-way ANOVA counterparts and substantially larger than
the percentile-based ones. If researchers should choose to “err on
the side of over-sampling” as recommened by Ellis [10], the vari-
ance estimation method based on two-way ANOVA and the results
reported in this paper are probably the ones researchers should
adopt. We also establish empirical relationships between the two

topic set size design methods, and discuss the balance between n
and the pool depth pd using both methods.

The remainder of this paper is organised as follows. Section 2
discusses related work. Section 3 describes two topic set size de-
sign methods: the first method determines n based on power anal-
ysis [22], while the second one determines n based on CIs [23].
Section 4 describes three variance estimation methods, as variance
estimates are required for topic set size design: the 95% percentile
method of Webber et al. [38] later adopted by Sakai [23]; the one-
way ANOVA-based method used by Sakai [22]; and an alternative
method based on two-way ANOVA statistics, which we introduce
in this paper. Section 5 reports on our new experiments using vari-
ance estimates based on the two-way ANOVA statistics and reruns
the topic set size design experiments of Sakai [22, 23]. Finally,
Section 6 concludes this paper.

2. RELATED WORK

2.1 Webber/Moffat/Zobel
Webber et al. [38] proposed procedures for building a test collec-

tion based on power analysis. They recommend adding topics and
conducting relevance assessments incrementally while examining
the achieved statistical power (i.e., the probability of rejecting the
null hypothesis H0 when the alternative hypothesis H1 is true) and
re-estimating the standard deviation σt of between-system perfor-
mance differences. They considered the comparison of two sys-
tems only and therefore adopted the t-test; they did not address
the problem of the family-wise error rate [3, 10]: if a pairwise t-
test is conducted independently for m systems with a significance
level of α (i.e., the probability of rejecting H0 when it is true), the
probability of detecting at least one nonexistent between-system
difference amounts to 1 − (1 − α)m(m−1)/2. Their experiments
focused on Average Precision (AP), a binary-relevance evaluation
measure. In order to estimate the standard deviation σt (or equiv-
alently, the variance σ2

t ), they used a 95%-percentile method with
existing data; this will be described in Section 4.1.

2.2 Sakai
While the aforementioned method by Webber et al. [38] assumed

that information retrieval (IR) researchers can iteratively sample
new topics and conduct relevance assessments while checking the
achieved power and reestimating variances in order to compare a
given pair of systems, Sakai [22, 23] addressed an arguably more
practical question: “I want to build a new test collection. How
many topics should I prepare?” His aim is to answer this question
directly and simply at the beginning of test collection design.

Sakai extended the work of Webber et al. in several ways: (a) He
used not only the t-test but also one-way ANOVA with power anal-
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ysis to consider the problem of ensuring high statistical power when
comparing m ≥ 2 systems [22]; he also proposed the alternative
approach of setting the topic set size n to ensure tight CIs [23];
(b) He considered a variety of graded relevance evaluation mea-
sures, including those for search result diversification, and demon-
strated that evaluation measures should be chosen at the test collec-
tion design phase as variances are heavily dependent on the choice
of evaluation measure; (c) He adopted a time-honoured method for
estimating σ2, the performance variance of any system (from which
σ2
t , the variance of the between-system score differences, may be

deduced) based on one-way ANOVA statistics, and performed vari-
ance pooling across multiple test collections [22]. His topic set size
design tools based on the t-test, one-way ANOVA, and the CI are
publicly available1; they can be used to determine n provided that
an estimate of σ2 is available.

While Sakai [23] estimated σ2
t using the 95%-percentile method

of Webber et al. for his CI-based topic set size design method,
Sakai [22] estimated σ2 (and σ2

t ) using the aforementioned statis-
tics from one-way ANOVA. In the present study, we repeat all
of their experiments using variance estimates based on two-way
ANOVA statistics, which turn out to be slightly larger than the one-
way ANOVA counterparts and substantially larger than the 95%-
percentile values.

2.3 Other Related Work
The IR community in the twentieth century was rather reluctant

to conduct parametric significance testing; however, nowadays it is
known that the t-test is relatively robust to assumption violations
and applicable to IR evaluation [25]. Computer-based alternatives
to classical significance testing, namely, the bootstrap [20, 28] and
the randomisation test [29, 32] are also available. However, while
several research disciplines have gone beyond significance testing
and standardised the use of CIs and effect sizes (ESs) [9, 10], a sim-
ilar statistical reform [11, 25] is yet happen in IR. That is, the use of
CIs, power, and ESs are rather limited even though statistical signif-
icance alone is not as informative as is commonly assumed [3]. Ex-
ceptions include the work of Nelson [16] who stressed the impor-
tance of power and ESs in IR evaluation in 1989; that of Carterette
and Smucker [5] who considered power analysis with the sign test
for AP; that of Smucker and Clarke [30] who discussed ESs for
their Time-Biased Gain measure.

The Generalisability Theory (GT) has also been shown to be use-
ful for assessing the test collection reliability [1, 4, 33]: while both
the GT approach and ours rely on variance estimates from past data,
Urbano, Marrero and Martín [33] point out that the reliability in-
dicators obtained from GT are difficult to interpret. We leave the
comparison of our methods with the GT approach for the purpose
of topic set size design as future work. Yet other alternatives to
classical significance testing include Killeen’s prep [14] and the
Baysian approach to hypothesis testing [2, 13], but these are also
beyond the scope of this study.

Besides the above statistically motivated studies, topic-splitting
heuristics have been used in the literature to answer the following
question: “I have n topics: are n/2 topics good enough for pre-
dicting what will happen with the other n/2 topics?” (e.g. [21, 36,
37, 39]). Sakai [20] showed that his discriminative power method
using bootstrap tests can provide results similar to topic splitting
while using the full n topics; this method has been used by sev-
eral researchers for comparing evaluation measures (e.g. [12, 19,
26, 31]). The topic set size design methods we examine in this
study may also be regarded as alternative ways to assess evaluation

1http://www.f.waseda.jp/tetsuya/tools.html

measures: they translate the statistical stability of measures into
practical significance, namely, the assessment cost [22, 23].

3. TOPIC SET SIZE DESIGN METHODS

3.1 Determining n based on Power Analysis
Sakai [22] released two simple Excel tools which allow researchers

to determine n based on power analysis. The first tool is based on
the paired t-test and concerns comparisons of m = 2 systems; the
second is based on one-way ANOVA and concerns comparisons of
m ≥ 2 systems. It was demonstrated that when m = 2, the two
tools give very similar results, with the ANOVA tool giving slightly
higher estimates. The present study uses the one-way ANOVA tool
as this is more general than the t-test version. The input to the
ANOVA-based tool are as follows:

α, β: The probability of Type I error α and that of Type II error
β [24]. The Excel tool contains four sheets for (α, β) =
(0.01, 0.10), (0.01, 0.20), (0.05, 0.10), (0.05, 0.20).

m: The number of systems that will be compared (m ≥ 2).

minD: The minimum detectable range [22]. That is, whenever
the performance difference between the best and the worst
systems is minD or higher, we want to ensure a power of β
given the significance level of α.

σ̂2: The estimated variance of a system’s performance, under the
homoscedasticity (i.e., equal variance) assumption [3, 22].
That is, it is assumed that the scores of the i-th system obey
N(μi, σ

2) where σ2 is common to all systems. This variance
is heavily dependent on the evaluation measure.

3.2 Determing n based on Confidence Inter-
vals

Sakai [23] released a simple Excel tool which allow researchers
to determine n based on the tightness of a CI between any two
systems. This method is closely related to the paired t-test and
considers m = 2 only. The input to the CI-based tool are:

α One minus the confidence level. This α is the same α used in
significance testing, and is usually set to α = 0.05 in order
to achieve 95% confidence [9].

δ The upperbound we impose on the width of any CI. That is, we
want the CI for any system pair to be no wider than δ.

σ̂2
t The estimated variance of the performance difference between

Systems X and Y . The paired t-test and the analogous CI are
based on the assumption that the system scores obey N(μX , σ2

X)
and N(μY , σ2

Y ), respectively, where μ• and σ2
• are the pop-

ulation means and variances. It then follows that the perfor-
mance difference obeys N(μX −μY , σ2

t ) where σ2
t = σ2

X+
σ2
Y . Hence, when the aforementioned per-system variance

estimate σ̂2 is available under the homoscedasticity assump-
tion, a reasonable estimate of σ2

t may be σ̂2
t = 2σ̂2 [22].

4. VARIANCE ESTIMATION METHODS

4.1 95% Percentile Method
Here we describe the method used by Webber et al. [38] and

later adopted by Sakai [23] for estimating σ2
t from a given matrix

of evaluation scores with nC topics and mC systems, where C rep-
resents an existing test collection. For each of the k =
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Table 1: TREC test collections and runs used for estimating σ2. The web track relevance grades [6, 7] were mapped to our relevance
levels as follows: −2 and 0 →L0 (i.e., nonrelevant); 1 →L1; 2 →L2; 3 →L3; 4 →L4.

short name track topics runs pool depth relevance levels documents
(a) task: adhoc/news

TREC03new 2003 robust 50 (601-650) 78 125 L0-L2 the Congressional Record)
TREC04new 2004 robust 49 (651-700 minus 672) 78∗ 100 L0-L2 528,155 (disks 4+5 minus

(b) task: adhoc/web
TREC11w 2011 web - ad hoc 50 37 25 L0-L3 approx. one billion
TREC12w 2011 web - ad hoc 50 28 20/30 L0-L4 (clueweb09)

(c) task: diversity/web
TREC11wD 2011 web - diversity 50 (same as TREC11w) 25 25 L0-L3 per intent approx. one billion
TREC12wD 2011 web - diversity 50 (same as TREC12w) 20 20/30 L0-L4 per intent (clueweb09)

∗ TREC 2004 description-only runs excluded (the set of runs used by Webber, Moffat and Zobel [38])

mC(mC − 1)/2 system pairs (b = 1, . . . , k), the method first
computes an unbiased estimate of the population variance of the
between-system difference in terms of a particular measure:

V b
C =

∑nC
j=1(d

b
C,j − d̄bC)

2

nC − 1
, (1)

where dbC,j is the difference between X and Y for the j-th topic
and the b-th system pair, and d̄bC is the mean difference for the
same pair. The k values are then sorted, and the 95th percentile is
taken to be σ̂2

t .

4.2 One-way ANOVA-based Method
The 95% percentile method obtains σ̂2

t directly from observed
data, but there are time-honoured methods for estimating popu-
lation variances in statistics. Sakai [22] used a method that uses
one-way ANOVA statistics, since his topic set size design method
was also based on one-way ANOVA. Let xij denote the perfor-
mance score for the i-th system with topic j (i = 1, . . . ,m and
j = 1, . . . , n); let x̄i• = 1

n

∑n
j=1 xij (sample system mean)

and x̄ = 1
mn

∑m
i=1

∑n
j=1 xij (sample grand mean). In one-way

ANOVA, the total variation ST =
∑m

i=1

∑n
j=1(xij − x̄)2 is de-

composed into between-system and within-system variations SA

and SE1 (i.e., ST = SA + SE1 ), where

SA = n

m∑

i=1

(x̄i• − x̄)2 , SE1 =

m∑

i=1

n∑

j=1

(xij − x̄i•)
2 . (2)

Furthermore , let:

VA = SA/φA , VE1 = SE1/φE1 , (3)

where φA = m− 1, φE1 = m(n− 1). Then F0 = VA/VE1 is the
test statistic for one-way ANOVA. Using the above basic statistics,
the variance σ2 can be estimated as follows [17]:

σ̂2 =
m− 1

mn
(VA − VE1 ) + VE1 . (4)

Here, m−1
mn

(VA − VE1 ) is an estimate of the population between-
system variance σ2

A; and VE1 is an estimate of the population within-
system variance σ2

E1 . These estimates are often used for estimating
the population ESs for one-way ANOVA [17].

4.3 Two-way ANOVA-based Method
In this study, we explore an alternative time-honoured method

for estimating σ2. While one-way ANOVA decomposes the to-
tal variation ST into between-system and within-system variations
SA and SE1 , two-way ANOVA (without replication) decomposes
ST into between-system, between-topic, and residual variations,
SA, SB and SE2 (i.e., ST = SA + SB + SE2 ) [25], by util-
ising the fact that the scores x•j correspond to one another. Let

x̄•j = 1
m

∑m
i=1 xij (sample topic mean) and

SB = m
n∑

j=1

(x̄•j − x̄)2 , SE2 =
m∑

i=1

n∑

j=1

(xij − x̄i•− x̄•j+ x̄)2 .

(5)
Furthermore, let:

VB = SB/φB , VE2 = SE2/φE2 , (6)

where φB = n− 1, φE2 = (m− 1)(n− 1). (VA is as defined in
Eq. 3.) Then VA/VE2 and VB/VE2 are the test statistics for two-
way ANOVA. Using the above basic statistics, the variance σ2 can
be estimated as follows [17]:

σ̂2 =
m− 1

mn
(VA − VE2 ) +

1

m
(VB − VE2 ) + VE2 . (7)

Here, m−1
mn

(VA − VE2 ) is an estimate of the population between-
system variance σ2

A (cf. Eq. 4); 1
m
(VB − VE2 ) is an estimate of

the population between-topic variance σ2
B ; and VE2 is an estimate

of the residual variance σ2
E2 . These estimates are often used for

estimating the population ESs for two-way ANOVA. In this study,
we use Eq. 7 to obtain σ̂2 (and σ̂2

t = 2σ̂2) for topic set size design,
while comparing the outcome with the results of Sakai [22, 23].

4.4 Pooled Variances
In each experiment, we pool variances obtained from multiple

existing test collections. Let σ2
t,C be the 95%-percentile obtained

using Eq. 1. Then σ2
t may be estimated as follows:

σ̂2
t =

∑

C

(nC − 1)σ̂2
t,C/

∑

C

(nC − 1) . (8)

The ANOVA-based estimates σ̂2 are also pooled using the same
formula.

5. EXPERIMENTS
Table 1 provides some statistics of the past data we used for ob-

taining variance estimates [22, 23]. We consider three IR tasks:
(a) adhoc news retrieval; (b) adhoc web search; and (c) diversified
web search; for each task, we used two data sets to obtain pooled
variance estimates. The adhoc/news data sets are from the TREC
robust tracks, with “new” topics from each year [34, 35]. The web
data sets are from the TREC web tracks [6, 7]. While we consid-
ered the measurement depths of md = 10, 1000 for adhoc/news,
we considered md = 10 only for the web tasks as we are interested
in the quality of the first search engine result page.

The actual variance depends on the evaluation measure and con-
ditions associated with it. Table 2 shows the evaluation measures
considered in this study. For the adhoc/news and adhoc web tasks,
we consider the binary Average Precision (AP), Q-measure (Q),
normalised Discounted Cumulative Gain (nDCG) and normalised
Expected Reciprocal Rank (nERR), all computed using the
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Table 2: Evaluation measures used in this study.
task type measure used in tasks such as tool
adhoc AP TREC adhoc/robust NTCIREVAL

Q NTCIR CLIR/IR4QA/GeoTime NTCIREVAL
nDCG TREC web adhoc NTCIREVAL
nERR TREC web adhoc NTCIREVAL

diversity α-nDCG TREC web diversity ndeval
nERR-IA TREC web diversity ndeval
D-nDCG NTCIR INTENT NTCIREVAL
D�-nDCG NTCIR INTENT NTCIREVAL

Table 3: σ̂2 for different evaluation measures with measure-
ment depth md , obtained from two-way ANOVA statistics.

σ̂2

(a1) task: adhoc/news (md = 1000)
Data m n AP Q nDCG nERR
TREC03new 78 50 .0543 .0548 .0569 .1214
TREC04new 78 49 .0517 .0527 .0559 .1201
Pooled - - .0530 .0538 .0564 .1208

(a2) task: adhoc/news (md = 10)
Data m n AP Q nDCG nERR
TREC03new 78 50 .0970 .0711 .0785 .1282
TREC04new 78 49 .0824 .0668 .0779 .1260
Pooled - - .0898 .0690 .0782 .1271

(b) task: adhoc/web (md = 10)
Data m n AP Q nDCG nERR
TREC11w 37 50 .0912 .0499 .0571 .1061
TREC12w 28 50 .0840 .0275 .0360 .0762
Pooled - - .0876 .0387 .0466 .0912

(c) task: diversity/web (md = 10)
Data m n α-nDCG nERR-IA D-nDCG D�-nDCG
TREC11wD 25 50 .0898 .0950 .0418 .0639
TREC12wD 20 50 .0768 .0843 .0331 .0453
Pooled - - .0833 .0897 .0375 .0546

NTCIREVAL toolkit2. For the diversity/web task, we consider α-
nDCG and Intent-Aware nERR (nERR-IA) computed using
ndeval3, as well as D-nDCG and D�-nDCG computed using
NTCIREVAL. When using NTCIREVAL, the gain value for each
Lx-relevant document was set to g(r) = 2x − 1: for example, the
gain for an L3-relevant document is 7, while that for an L1-relevant
document is 1. As for ndeval, the default settings were used: this
program ignores per-intent graded relevance levels.

5.1 Variance Estimates
Table 3 shows the variance estimates we obtained for each task

and evaluation measure, using the two-way ANOVA-based method
described in Section 4.3. Figure 1 visualises the pooled variance
estimates in this table, and compares them with the pooled esti-
mates obtained using the 95%-percentile method (Section 4.1) and
the one-way ANOVA-based method (Section 4.2). It can be ob-
served that the ANOVA-based estimates are substantially larger
than the 95%-percentile method; the two ANOVA-based methods
yield very similar results, with the two-way ANOVA-based one
giving marginally larger values. This subtle difference will only af-
fect estimates for very large topic set sizes. Since larger variances
imply larger topic sets, we use the pooled two-way ANOVA-based
estimates for topic set size design, choosing to possibly “err on the
side of over-sampling” as recommended by Ellis [10]. In the fol-
lowing sections, we discuss how our new variance estimates affect
the results previously reported by Sakai [22, 23].

2http://research.nii.ac.jp/ntcir/tools/
ntcireval-en.html. For computing AP and Q, we fol-
low Sakai and Song [27] and divide by min(md , R) rather than
by R (i.e., the number of relevant documents) in order to properly
handle small measurement depths.
3http://trec.nist.gov/data/web/12/ndeval.c
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Figure 1: Comparison of the three variance methods with the
pooled variances.

5.2 Results based on Power Analysis
Tables 4-7 show the required topic set sizes for different IR tasks

under different power-based requirements for m = 10, 100 sys-
tems, based on the two-way ANOVA-based pooled variances shown
in Table 3. These tables can be compared with Tables 8-11 from
Sakai [22] who used one-way ANOVA-based estimates. The bold-
face values are those under Cohen’s five-eighty convention [8], i.e.,
(α, β) = (0.05, 0.20). From Tables 4 and 5 (adhoc/news with
md = 1000, 10), we can observe that:

• As nERR is substantially less stable than AP, Q and nDCG
(See Table 3(a1) and (a2)), it requires many more topics than
the other measures. For example, Table 4(II) shows that, un-
der (α, β,minD,m) = (0.05, 0.20, 0.10, 100) with md =
1000, nERR requires 975 topics while AP, Q and nDCG re-
quire only 428, 435, 456 topics, respectively4. Throughout
Table 4, nERR is more than twice as expensive as AP, Q and
nDCG.

• As reducing md causes higher variances (Compare Table 3(a1)
and (a2)), this also means we need more topics. More impor-
tantly, while the advantage of utilising the graded relevance
assessments with Q and nDCG is not clear when md = 1000
(a typical TREC ad hoc setting), it is clear when md = 10.
For example, Table 5(II) shows that, under (α, β,minD,m) =
(0.05, 0.20, 0.10, 100) with md = 10, AP requires 725 top-
ics, while Q and nDCG require only 557 and 631 topics, re-
spectively. As for nERR, it requires 1,026 topics5.

• In Table 4(I), the topic set sizes for AP, Q and nDCG under
(α, β,minD ,m) = (0.05, 0.20, 0.20, 10) are 42, 43, and
45, respectively6. Thus, a typical TREC adhoc/news test col-
lection with n = 50 topics is good enough for guaranteeing
a minimum detectable range of 0.20 in terms of AP, Q, and
nDCG for comparing m = 10 systems under Cohen’s five-
eighty convention.

From Table 6 (adhoc/web with md = 10), we can observe that:

• As Q and nDCG are substantially more stable than AP and
nERR for this task (See Table 3(b)), they require substan-
tially fewer topics. For example, Table 6(II) shows that, un-
der (α, β,minD,m) = (0.05, 0.20, 0.10, 100) with md =
10, AP and nERR require 707 and 736 topics, while Q and

4The corresponding one-way ANOVA-based estimates of n are
965, 423, 429, and 451 [22].
5The corresponding one-way ANOVA-based estimates of n are
716, 550, 624, and 1,016 [22].
6The corresponding one-way ANOVA-based estimates of n are 42,
42, 44 [22].
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Table 4: Topic set size table (m = 10, 100) for adhoc/news
(md = 1000) with AP/Q/nDCG/nERR.

α minD β = .10 β = .20
(I) m = 10

.01 .02 6920/7024/7364/15771 5659/5745/6022/12898
.05 1108/1125/1179/2524 906/920/964/2065
.10 278/282/295/632 227/231/242/517
.20 70/71/75/159 58/59/61/130
.25 45/46/48/102 37/38/40/84

.05 .02 5257/5336/5594/11981 4127/4190/4392/9406
.05 842/854/894/1917 661/671/703/1506
.10 211/214/224/480 166/168/176/377
.20 53/54/57/120 42/43/45/95
.25 34/35/36/77 27/28/29/61

(II) m = 100
.01 .02 16492/16741/17550/37588 14000/14211/14898/31909

.05 2639/2679/2809/6015 2241/2275/2384/5106

.10 660/670/703/1504 561/569/597/1277

.20 166/168/176/377 141/143/150/320

.25 106/108/113/241 90/92/96/205
.05 .02 13040/13237/13876/29720 10688/10849/11374/24360

.05 2087/2118/2221/4756 1711/1737/1820/3898

.10 522/530/556/1189 428/435/456/975

.20 131/133/139/298 108/109/114/244

.25 84/85/89/191 69/70/74/157

Table 5: Topic set size table (m = 10, 100) for adhoc/news
(md = 10) with AP/Q/nDCG/nERR.

α minD β = .10 β = .20
(I) m = 10

.01 .02 11724/9009/10210/16593 9588/7367/8350/13570
.05 1877/1442/1634/2656 1535/1180/1337/2172
.10 470/361/409/665 385/296/335/544
.20 118/91/103/167 97/75/85/137
.25 76/59/66/107 62/48/55/88

.05 .02 8906/6843/7756/12605 6993/5373/6090/9897
.05 1426/1096/1242/2017 1120/860/975/1584
.10 357/274/311/505 281/216/244/397
.20 90/69/78/127 71/55/62/100
.25 58/44/50/81 46/35/40/64

(II) m = 100
.01 .02 27942/21470/24333/39548 23720/18226/20656/33573

.05 4471/3436/3894/6328 3796/2917/3306/5372

.10 1118/860/974/1583 950/730/827/1344

.20 280/215/244/396 238/183/207/337

.25 180/138/156/254 153/117/133/216
.05 .02 22093/16976/19240/31270 18109/13915/15770/25630

.05 3535/2717/3079/5004 2898/2227/2524/4101

.10 884/680/770/1251 725/557/631/1026

.20 222/170/193/313 182/140/158/257

.25 142/109/124/201 117/90/102/165

nDCG require only 313 and 377 topics, respectively7. Through-
out Table 6, AP and nERR are more than twice as expensive
as Q.

As noted by Sakai [22], the advantage of Q and nDCG over AP
as demonstrated in both Table 5 (adhoc/news) and Table 6 (ad-
hoc/web) strongly suggests the importance of utilising graded rel-
evance assessments when the measurement depth md is small. On
the other hand, when md is large, how many relevant documents
have been retrieved, and at what positions, probably outweigh whether
each document is highly or partially relevant.

From Table 7 (diversity/web with md = 10), we can observe
that:

• As D-nDCG and D�-nDCG are substantially more stable than
α-nDCG and nERR-IA (See Table 3(c)), they require sub-
stantially fewer topics. For example, Table 7(II) shows that,
under (α, β,minD,m) = (0.05, 0.20, 0.10, 100) withmd =
10, D-nDCG and D�-nDCG require only 303 and 441 topics,

7The corresponding one-way ANOVA-based estimates of n are
701, 731, 310 and 373 [22].

Table 6: Topic set size table (m = 10, 100) for adhoc/web
(md = 10) with AP/Q/nDCG/nERR.

α minD β = .10 β = .20
(I) m = 10

.01 .02 11437/5053/6084/11907 9353/4133/4976/9738
.05 1831/809/974/1906 1497/662/797/1559
.10 458/203/244/477 375/166/200/391
.20 115/51/62/120 95/42/51/98
.25 74/33/40/77 61/28/33/63

.05 .02 8688/3839/4622 6821/3014/3629/7102
.05 1391/615/740/1448 1092/483/581/1137
.10 348/154/186/362 274/121/146/285
.20 88/39/47/91 69/31/37/72
.25 56/25/30/59 44/20/24/46

(II) m = 100
.01 .02 27258/12042/14501/28378 23139/10223/12310/24090

.05 4362/1927/2321/4541 3703/1636/1970/3855

.10 1091/482/581/1136 926/410/493/964

.20 273/121/146/285 232/103/124/242

.25 175/78/94/182 149/66/80/155
.05 .02 21552/9522/11465/22438 17665/7805/9398/18391

.05 3449/1524/1835/3591 2827/1249/1504/2943

.10 863/381/459/898 707/313/377/736

.20 216/96/115/225 177/79/95/185

.25 139/62/74/144 114/51/61/118

Table 7: Topic set size table (m = 10, 100) for diversity/web
(md = 10) with α-nDCG/nERR-IA/D-nDCG/D�-nDCG.

α minD β = .10 β = .20
(I) m = 10

.01 .02 10875/11711/4896/7129 8894/9577/4005/5830
.05 1741/1874/784/1141 1424/1533/642/934
.10 436/469/197/286 357/384/161/234
.20 110/118/50/72 90/97/41/59
.25 70/76/32/47 58/62/27/38

.05 .02 8262/8896/3720/5415 6487/6985/2921/4252
.05 1322/1424/596/867 1039/1118/468/681
.10 331/357/149/217 260/280/118/171
.20 83/90/38/55 66/71/30/43
.25 54/58/24/35 42/46/20/28

(II) m = 100
.01 .02 25920/27911/11669/16990 22004/23694/9906/14423

.05 4148/4466/1868/2719 3521/3792/1586/2308

.10 1037/1117/467/680 881/949/397/578

.20 260/280/117/171 221/238/100/145

.25 167/179/75/109 142/152/64/93
.05 .02 20494/22069/9226/13433 16798/18089/7563/11011

.05 3280/3532/1477/2150 2688/2895/1211/1762

.10 820/883/370/538 673/724/303/441

.20 206/221/93/135 169/182/76/111

.25 132/142/60/87 108/116/49/71

while α-nDCG and nERR-IA require as many as 673 and
724 topics, respectively8.

• In Table 7(II), the number of topics required required by D-
nDCG is n = 49 under (α, β,minD,m) =
(0.05, 0.20, 0.25, 100). Thus, a typical TREC diversity/web
test collection with n = 50 topics is good enough for guar-
anteeing a minimum detectable range of 0.25 in terms of
D-nDCG for comparing m = 100 systems under Cohen’s
convention. On the other hand, α-nDCG, nERR-IA and D�-
nDCG do not pass the test as the required topic set sizes are
108, 116, and 71, respectively9.

Figure 2 visualises the relationship between the required topic
set size (n) and the number of systems to be compared (m) un-
der (α, β,minD) = (0.05, 0.20, 0.10). For example, Figure 2(b)
shows that, if we expect to compare m = 200 adhoc/web sys-

8The corresponding one-way ANOVA-based estimates of n are
301, 438, 666, and 718.
9The corresponding one-way ANOVA-based estimates of n are 49,
107, 115, and 71[22].

Proceedings of the 6th EVIA Workshop, December 9, 2014, Tokyo, Japan

5



tems10 under the above requirements, AP and nERR would require
964 and 1,004 topics, while Q and nDCG would require only 426
and 513 topics. Similarly, Figure 2(c) shows that, if we expect to
compare m = 200 diversity/web systems under the above require-
ments, α-nDCG and nERR-IA would require 917 and 987 topics,
while D-nDCG and D�-nDCG would require only 413 and 601 top-
ics.
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Figure 2: Required number of topics n against the number of
systems m, with (α, β,minD) = (0.05, 0.20, 0.10).

10This setting is not unrealistic. For example, the TREC 2011 Mi-
croblog Track received 184 runs from 59 participating teams [18].

Table 8: Topic set sizes for achieving tight CIs at α = 0.05.
(a1) task: adhoc/news (md = 1000)

δ AP Q nDCG nERR
.10 165 168 176 -
.15 75 76 79 167
.20 43 44 46 95
.25 29 29 30 62

(a2) task: adhoc/news (md = 10)
δ AP Q nDCG nERR
.10 278 214 243 -
.15 125 97 109 176
.20 71 55 63 100
.25 47 36 41 65

(b) task: adhoc/web (md = 10)
δ AP Q nDCG nERR
.10 272 121 146 283
.15 122 55 66 127
.20 70 32 38 73
.25 46 22 25 47

(c) task: diversity/web (md = 10)
δ α-nDCG nERR-IA D-nDCG D�-nDCG
.10 258 278 118 170
.15 116 125 54 77
.20 66 71 31 44
.25 43 47 21 29

5.3 Results based on Confidence Intervals
Table 8 shows the topic set sizes required to ensure tight CIs,

based on two-way ANOVA variance estimates. The table can be
compared with Table 3 from Sakai [23] who used 95% percentile
estimates. For example, δ = 0.10 means that the CI of any between-
system difference is given by d̄ ± 0.05 or something narrower,
where d̄ denotes the mean difference. For a few cells, we could
not compute the gamma function with the Excel tool as n was too
large (n > 343). It can be observed that:

• Q outperforms the other measures in Tasks (a2) and (b) in
terms of the required topic set size, while nERR consistently
underperforms the others. For example, in (b) (adhoc/web),
given (α, δ) = (0.05, 0.10), Q requires only 121 topics,
while AP and nERR require 272 and 283 topics, respec-
tively11.

• In Task (c), D-nDCG requires substantially fewer topics than
α-nDCG and nERR-IA. For example, given (α, δ) =
(0.05, 0.10), D-nDCG requires only 118 topics, while α-
nDCG and nERR-IA require 258 and 278 topics, respec-
tively12.

Figure 3 shows the relationship between our power-based and
CI-based topic set size design methods. Note that Sakai [22, 23]
did not discuss this. In each graph, the CI upperbound δ and the
minimum detectable range minD for the ANOVA-based power
analysis are plotted against the required topic set size n. The top
graph uses σ̂2 = .0690, which is the estimated variance for Q in
Table 3(a2); the bottom graph uses σ̂2 = 0.375, which is the esti-
mated variance for D-nDCG in Table 3(c). These are the smallest
variances in each IR task. It can be observed that the power-based
curve with m = 10 almost completely overlaps with the CI-based
one. That is, requiring that (α, β,minD, m) = (0.05, 0.20, c, 10)
based on the power-based method is equivalent to requiring that
(α, δ) = (0.05, c) based on the CI-based method, for any c. Also,
the bottom graph shows, for stable measures such as D-nDCG, that
when we have n = 50 topics (as in a TREC diversity task), the

11The corresponding 95%-percentile estimates of n are 106, 202
and 224 [23].

12The corresponding 95%-percentile estimates of n are 98, 180 and
202 [23].
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Figure 3: The relationship between δ and minD .

minimum detectable range minD for m = 2 systems (i.e., the
minimum detectable difference between two systems [22]) is about
0.10; the CI upperbound δ and the minD for m = 10 systems are
both about 0.15; and the minD for m = 100 systems is about 0.25,
i.e., one-quarter of the range of a normalised evaluation measure.

5.4 Cost Analysis via Pool Depth Reduction
Previous sections discussed adhoc/news, adhoc/web and diver-

sity/web search tasks, but assumed that the pool depth pd was a
given. In this section, we focus our attention on the adhoc/news
task with md = 1000, where we have depth-125 and depth-100
pools (See Table 1), which enables us to consider shallower pools [22,
23]. From the original TREC03new and TREC04new relevance
assessments, we created depth-pd (pd = 100, 90, 70, 50, 30, 10)
versions of the relevance assessments by filtering out all topic-
document pairs that were not contained in the top pd documents
of any run. Using each set of the depth-pd relevance assessments,
we re-evaluated all runs using AP, Q, nDCG and nERR. Then, us-
ing these new topic-by-run matrices, new pooled variance estimates
were obtained using the two-way ANOVA-based method.

Table 9 shows the pooled variance estimates obtained from the
depth-pd versions of the TREC03new and TREC04new relevance
assessments. It also shows the average number of documents judged
per topic for each pd . For example, while the original depth-125
relevance assessments for TREC03new contain 47,932
topic-document pairs, the depth-100 version has 37,605 pairs across
50 topics; the original TREC04new depth-100 relevance assess-
ments have 34,792 pairs across 49 topics. Hence, on average,
(37, 605 + 34, 792)/(50 + 49) = 731 documents are judged per
topic when pd = 100. Similarly, (4, 905+4, 581)/(50+49) = 96
documents are judged per topic when pd = 10. We assume that the
average number of documents judged is a constant for a given pd ,
though in reality it depends on the number and the diversity of runs
besides pd .

Based on the power-based method, Figure 4(a) plots the required
topic set size n against the average number of documents judged
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Figure 4: Required number of topics n against the average
number of documents judged per topic for a given pool depth
pd , for adhoc/news (md = 1000).

per topic, for minD = 0.15 with m = 10 under Cohen’s five-
eighty convention. Similarly, based on the CI-based method, Fig-
ure 4(b) plots n against the average number of documents judged
per topic, for δ = 0.15. Again, it can be observed that when
m = 10, setting minD for the power-based method is almost
equivalent to setting δ for the CI-based method, and therefore that
the two graphs are almost identical. The two graphs show that, if
we construct a topic set with n = 100 topics with depth-10 pools
and use AP, this ensures a minimum detectable range minD of 0.15
when we compare up to m = 10 systems, as well as CI widths no
greater than δ = 0.15. This design is statistically equivalent to hav-
ing n = 75 (or n = 74) topics with depth-100 pools. On average,
the first design would require 96 ∗ 100 = 9, 600 relevance judg-
ments, while the second design would require 731 ∗ 75 = 54, 825
relevance judgments, which is 5.7 times as expensive. Thus, these
graphs visualise what is well-known: it is better to have many top-
ics with few judgments than to have few topics with many judg-
ments (e.g. [4, 5, 38]). It can also be observed that, because the
variance of nERR is very high regardless of the pool depth, it is
always about twice as costly as the other evaluation measures.

6. CONCLUSIONS
We reran the experiments reported by Sakai [22, 23] using vari-

ance estimates based on two-way ANOVA [17], which turned out
to be slightly larger than their one-way ANOVA counterparts and
substantially larger than the percentile-based counterparts. If re-
searchers should choose to “err on the side of over-sampling” as
recommened by Ellis [10], the variance estimation method based
on two-way ANOVA and the results reported in this paper are prob-
ably the ones researchers should adopt. We demonstrated that,
using variance estimates from existing data, the topic set size n
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Table 9: Number of relevance assessments and pooled σ̂2 for reduced pool depths with adhoc/news (measurement depth md = 1000).
Pool depth TREC03new #judged TREC04new #judged Average Pooled σ̂2

pd for 50 topics for 49 topics judged/topic AP Q nDCG nERR
125 47,932 - - - - - -
100 37,605 34,792 731 .0530 .0537 .0562 .1208
70 27,816 24,491 528 .0546 .0550 .0563 .1208
50 20,839 18,612 398 .0561 .0562 .0565 .1208
30 13,045 11,968 253 .0596 .0589 .0570 .1209
10 4,905 4,581 96 .0714 .0658 .0594 .1206

can be determined to ensure high power and/or tight CIs; as differ-
ent evaluation measures have different variances, evaluation mea-
sures should be chosen at the test collection design phase [22, 23].
Our pool depth reduction experiments with the power-based and
CI-based topic set size design methods have shown that having
n = 75 topics with depth-100 pools is about 5.7 times as costly
as having n = 100 topics with depth-10 pools, even though these
two designs are statistically equivalent. In addition, by comparing
the power-based and CI-based results, we showed that requiring
(α, β,minD,m) = (0.05, 0.20, c, 10) based on the power-based
method is equivalent to requiring that (α, δ) = (0.05, c) based on
the CI-based method, for any c. In practice, researchers can choose
from a set of statistically equivalent test collection designs based
on the available budget, in order to maximise reusability.

All of our experiments are reproducible: the topic-by-run matri-
ces are available at http://www.f.waseda.jp/tetsuya/
data.html (Use the CIKM2014PACK), and the topic set size de-
sign tools are available at http://www.f.waseda.jp/tetsuya/
tools.html. Our techniques can easily be applied to non-IR
tasks as well, starting with some data that are equivalent to topic-
by-run matrices.
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