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ABSTRACT
In this paper, we describe our participation to the NTCIR-11
IMine task, for both subtopic mining and document rank-
ing sub-tasks. We experimented a new approach for aspect
embedding which learns query aspects by selecting (good)
expansion terms from a set of resources. In our partici-
pation, we used five representative resources: ConceptNet,
Wikipedia, query logs, feedback documents and query sug-
gestions from Bing, Google and Yahoo!. Our method is
trained in a supervised manner according to the principle
that related terms should correspond to the same aspects.
We tested our approach when using a single resource, and
when using different resources. Experimental results show
that our best document ranking run is ranked No. 2 of all
15 runs in terms of coarse-grain and fine-grain results.

Team Name
UDEM

Sub-tasks
Subtopic Mining (English), Document Ranking (English)

Keywords
Diversified Query Expansion, Query Classification, Aspect
Embedding, Resource Integration

1. INTRODUCTION
In NTCIR-11, the UDEM group participated in IMine

task, which includes two sub-tasks: subtopic mining and
documents ranking, both for English topics.

We used a new method to automatically learn latent as-
pects 1 for diversifying search results, by using multiple re-
sources. Our approach is based on embedding to select a set
of ’good’ expansion terms for an original query, such as each
expansion term can be mapped into one or several possible
aspect(s) of the query. Candidate expansion terms can be
selected from external resources (e.g., Wikipedia, query logs,
WordNet [16]), or from query suggestions (e.g., those of Bing
or Yahoo!). Our approach belongs to a family of search re-
sult diversification (SRD) approaches, recently proposed by
Bouchoucha et al. [4, 5] and Vargas et al. [21] which is called
diversified query expansion (DQE). DQE explicitly models

1In this paper, we interchangeably use the terms ’aspect’
and ’subtopic’ to refer to the same concept which is the user
intent.

the query aspects and attempts to select documents that
cover as much as possible these aspects. In comparison with
the usual SRD approaches, DQE tries to first generate a set
of diversified (i.e., non-redundant) expansion terms to help
retrieve more diversified documents, then select diversified
results from them.

The approach that we describe in this paper is related
to the works that use several resources for query expan-
sion (or query reformulation). In instance, Bendersky et al.
[1] collect expansion terms (concepts) from news-wire and
Web corpora. These resources are then used to compute
the importance (weight) of each concept, and to perform
pseudo-relevance feedback. They show that combining mul-
tiple resources is usually more effective than considering any
resource in isolation, and that such combination yields to
improve the diversity of search results. Recently, Deveaud
et al. [10] conclude that the more we use several resources,
the more likely we can improve the topical representation
of the user information need. He et al. [13] propose the
combination of click-logs, anchor text and web n-grams to
generated related terms for query expansion, and experimen-
tally show that combining several resources leads to select
expansion terms from a good quality. Vargas et al. [21]
adapt an existing diversification approach (namely xQuAD
[18]) to select diverse expansion terms from feedback docu-
ments. Their method selects expansion terms from groups
of documents that cover the same query subtopic. More re-
cently, Bouchoucha et al. [4] leveraged one resource, namely
ConceptNet, or several resources [5] to select diverse expan-
sion terms for the purpose of query subtopics coverage. In
particular, the authors show that multiple resource tend to
complete each other, and that using different resources usu-
ally yields to select expansion terms from a good quality
which contributes to a better coverage of the query aspects.
Liu et al. [14] proposed a new DQE approach called com-
pact aspect embedding, which exploits trace norm regular-
ization to learn a low rank vector space for the query. In
their work, each expansion term is mapped into an aspect
vector space and similar expansion terms (corresponding to
the same query subtopic) are pushed together in the vector
space. Despite that the authors in [14] use one single re-
source (namely query logs) for selecting candidate expansion
terms, they experimentally show that learning latent aspect
embedding helps to improve the state-of-the-art SRD ap-
proaches and leads to better relevance and diversity results.

In our participation in NTCIR-11 IMine task, we use the
set of expansion terms automatically generated by our ap-
proach to design the different query subtopics, which is the
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purpose of the subtopic mining sub-task. Afterwards, we
expand each query by the set of expansion terms (aspects)
obtained by our approach, and submit the expanded query
to a retrieval system (we used Indri/Lemur 2 in our experi-
ments). This leads to a set of diversified search results for the
original query, which is the purpose of the second sub-task to
which we participated (that is, document raking sub-task).
Note that the set of returned documents regarding to each
expanded query are not processed by any further selection,
such as MMR [7] or xQuAD [18], although this is possible.

In addition, this year, participants to NTCIR-11 IMine
task should also judge the ’class’ of the query (i.e., whether
it is ambiguous, broad or clear). For that, we also learn
a classifier for a query by collecting a set of features, and
according to the class of the query, we propose different di-
versification methods.

It is worth noting that we applied our embedding frame-
work only in the subtopic mining sub-task. The two remain-
ing sub-tasks (i.e., document ranking and query classifica-
tion) do not benefit from the use of our approach. First, we
develop a set of features for query classification. This clas-
sification is done offline, independently from the subtopic
mining and document ranking sub-tasks. Then, we apply
our embedding framework to collect expansion terms from
a good quality for the purpose of better diversifying search
results by covering as much as possible the query subtopics.
This process is applied in different ways, according to the
query type (ambiguous, broad and clear), since we observe
that ambiguous queries need to be diversified more than
broad queries. These latter need a further diversification
than clear queries 3. Finally, the outputted documents re-
turned for the expanded queries are directly used for the
document ranking sub-task. We provide the details of our
participation in the reminder of this paper.

2. EMBEDDING FRAMEWORK
In this section, we first describe our embedding framework

leading to learn aspects for a query. Then, we provide details
about the similarity functions that we used for each resource,
in order to compute the similarity between expansion terms.

2.1 Proposed Approach
We learn an embedding function to find the set of aspects

underlying a query. An embedding vector spans over a set
semantic dimensions, similar to topics in LDA [2], which
could be used to describe different query aspects. An em-
bedding vector is learned for each candidate expansion term.
Each dimension in the embedding vector is intended to cor-
respond to an aspect of the query. The embeddings are
learned so that similar terms (measured using all resources
and query suggestions) are also mapped into similar aspect
vectors as follows:

min
X
r∈R

X
ei,ej∈E,i 6=j

1

2
· ωr · (sim(~ei, ~ej)− simr(ei, ej))2

subject to: ||~e||22 = 1, ek ≥ 0, k = 1, 2, · · · , N, ∀e ∈ E.
(1)

2http://www.lemurproject.org/indri.php
3More precisely, we observed that it is better to not diversify
clear queries since diversification of this type of queries risks
to hurt the performance compared to a standard baseline.

Here, R denotes the set of resources we use to suggest sim-
ilar terms, E means all expansion terms collected from all
resources; ωr ∈ [0, 1] is the weight of resource r. All the
weights are normalized based on

P
r ωr = 1. For simplicity,

we adopted a uniform distribution of ωr in our participation,
that is ωr = 1

|R| for all resources. N is the dimensions of

aspect space; ~ek is the vector corresponding to the kth as-
pect, and ek is the expansion term representing that aspect.
All aspect vectors are normalized to 1 using `2-norm.

The basic idea is that a good aspect representation should
make two known similar terms similar, whatever the re-
source used to recognize the similarity between them. To
illustrate how our approach works in practice, let us con-
sider the example query “apple” ((query #51)). If expansion
terms like ‘company’ and ‘store’ are semantically similar ac-
cording to some resource, then we want that the correspond-
ing two vectors will be mapped into similar vectors in the
embedding space, since they correspond to the same aspect
of the query “apple” (which is the apple company). However,
the embedding vector corresponding to a term like ‘fruit’
should appear far from of the vector corresponding to terms
‘company’ and ‘store’, since it corresponds to another aspect
(or interpretation) of “apple” (which is apple fruit).

To solve the optimization problem described above, we
use gradient descent [3], and we iteratively update the as-
pect vectors using the gradient descent rule until we ob-
serve no significant updates of the gradients with respect to
all the aspect vectors 4. Note that, for the aspect vectors
initialization, we adopted a uniform distribution by setting
each dimension to 1√

N
, without promoting any aspect to

the other, because we find that this setting experimentally
works good. Also, notice that the our objective function
described in Formula 1 is guaranteed to converge towards a
local minimum since the space’s solution (Er) is finite (there
is usually a limited number of candidate expansion terms for
any query).

In Formula 1, sim(~ei, ~ej) denotes the global similarity be-
tween ~ei and ~ej which is computed by using Formula 2:

sim(~ei, ~ej) =
X

k=1,··· ,N

ek
i · ek

j (2)

where ek
i (resp. ek

j ) represents the value of the kth dimension
of aspect vector ~ei (resp. ~ej). simr(ei, ej) in Formula 1 is
used to compute the local similarity between two expansion
terms ei and ej , according to resource r. In the Section 2.2,
we describe each similarity function that we used, regarding
to each resource.

Finally, we observe that most of the candidate expan-
sion terms suggested by the different resources for the same
query tend to be redundant, since different resources can
suggest similar expansion terms. To remove the redundancy
of these terms, and to ensure a better coverage of the query
subtopics, we further apply the MMRE (Maximal Marginal
Relevance based Expansion) procedure, that was proposed
by Bouchoucha et al. [4, 5], as follows:

e∗ = argmaxe∈E{β · simr(e, q)− (1− β) · max
e
′∈ES

simr(e, e
′
)}

(3)

4 ||∇
(t+1)
i −∇(t)

i ||
2
2

||∇(t)
i ||

2
2

< 0.0001, ∀ei ∈ E, where ∇(t)
i means the

gradient with respect to ~ei after the tth iteration.
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where q denotes an original query; ES represents the set
of expansion terms already selected; E =

S
r

Er means all

expansion term collected from the different resources that
we consider in this work; β ∈ [0, 1] trades relevance to re-
dundancy; simr(e, q) denotes the resource specific similarity
between the expansion term e and the original query q. Note
that, if an expansion terms e is selected from a resource r,
then we apply the similarity functions defined for that re-

source r (that is, simr(e, q) and simr(e, e
′
)). Also, all simi-

larities based resources are normalized to [0,1] to make them
comparable. Following [5], we estimate simr(e, q) by using
the following simpler similarity between the expansion term
and any sub-string of the query:

simr(e, q) = max
s∈q

simr(e, s) · |s||q| (4)

Here, s is a sub-string of q, |s| denotes the number of words
in s, and simr(e, s) is the local similarity between e and s,
based on resource r, as will be defined in the section 2.2.

2.2 Resource-based Similarity Functions
In our participation, we have investigated five typical re-

sources: ConceptNet, Wikipedia, query logs, feedback docu-
ments and query suggestions from Bing, Google and Yahoo!
which are provided by NTCIR organizers for INTENT2. We
used the topics of the latter for training purposes. The rea-
son of using several resources is twofold: (1) Several existing
studies (e.g. [1, 5, 10, 13] to name just a few) showed that
using multiple resources can yield better results for search
result diversification, and (2) One single resource is usually
not enough to ensure a good coverage of query subtopics
and hence, combining several resources can help cover more
subtopics of the query. In this work, we use the same defini-
tions of the similarity functions proposed by Bouchoucha et
al. [4, 5], computed on ConceptNet, Wikipedia, query logs
and feedback documents. Now, we provide an overview of
these resource-based similarity functions.

First, the similarity measured according to ConceptNet
(which is a network of terms) considers the number of com-
mon nodes (terms) connected between two terms: The more
there are common nodes, the more the two terms are consid-
ered similar. The similarity function simC(ei, ej) between
two expansion terms ei and ej based on ConceptNet is sim-
ilar to the well-known Jaccard coefficient and is computed
as follows:

simC(ei, ej) =
|Nei ∩Nej |
|Nei ∪Nej |

(5)

where Nei (resp. Nej ) is the set of nodes from the graph of
ConceptNet that are related to the node of the concept ei

(resp. ej). The more common node ei and node ej share,
the more they are considered to be (semantically) similar.

Second, for Wikipedia, we use the outlinks, categories, and
the set of terms that co-occur with the original query or a
part of the query. In cases where no Wikipedia pages match
the query or a part of the query, we use Explicit Semantic
Analysis (ESA)[12] to get semantically related Wikipedia
pages, from which to extract the outlinks, categories and
representative terms to obtain a set of candidate expansion
terms. The similarity function simW (ei, ej) between two
expansion terms ei and ej based on Wikipedia is defined by
Formula 6, where Wi (Wj) is the set of vectors containing
term ei (ej) obtained by ESA, and sim(wi, wj) is simply the

cosine similarity of vector wi and wj .

simW (wi, ej) =
1

|Wi||Wj |
X

wi∈Wi,wj∈Wj

sim(wi, wj) (6)

Third, for query logs, the set of candidate expansion terms
includes the queries that share the same click-through data
with the original query, as well as the reformulated queries
that appear in a user session within a 30 minutes-time win-
dow. The similarity function simQL(ei, ej) between two ex-
pansion terms ei and ej based on query logs is defined by
Formula 7 :

simQL(ei, ej) =
|Qei ∩Qej |
|Qei ∪Qej |

(7)

where Qei (resp. Qej ) is the set of reformulated queries of
the original query which contain term ei (resp. term ej).

Fourth, for initial search results, we consider top K re-
turned results as relevant documents (K is experimentally
set to 50 in our experiments), and use Pseudo-Relevance
Feedback (PRF) to generate the set of candidate expansion
terms from feedback documents. The similarity function
simD(ei, ej) between two expansion terms ei and ej based
on the feedback documents is defined by Formula 8 :

simD(ei, ej) =
2 · freq(ei, ej)P

e
′ freq(ei, e

′) +
P

e
′ freq(ej , e

′)
(8)

where freq(e, e
′
) refers to the co-occurrence of term e and

e
′

within a fixed window of size 15.
Finally, for the fifth resource (query suggestions), we use

an additional similarity function that we defined as follows:
The similarity between two candidate expansion terms ei

and ej using the query suggestions (denoted hereafter by
simQS(., .)), is computed as follows:

simQS(ei, ej) =
2 · n(ei, ej)

n(ei) + n(ej)
(9)

where n(ei) (resp. n(ej)) is the number of times term ei

(resp. ej) appears in the query suggestions, and n(ei, ej) is
the number of times when both terms ei and ej appear in
the set of suggestions for the same query.

3. SUBTOPIC MINING SUB-TASK

3.1 Query Classification
The first step in this sub-task is to classify a query into

one of the three target classes: ambiguous, broad or clear.
For this purpose, we learned a SVM classifier by collecting
a set of features. Table 1 describes the set of features that
we consider in this paper.

We organize our features into query-dependent features
and query-independent features. While the former are com-
puted on-the-fly at querying time, the latter are computed
on offline (i.e. at indexing time).

For the query-dependent features, we simply consider two
features: the number of query terms (NumTerms) and a boolean
value reflecting whether the query is a question or not (Quest).
The idea behind using the first feature is that ambiguous
queries tend to be short, following previous works such as
[17] which shows that the average length of ambiguous queries
is about one word. Broad and clear queries, however, are
well formatted queries that contain several words (which
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Table 1: All features computed in this work for automatically classifying queries. (Here, q denotes a query that we want to
classify into clear, broad or ambiguous and D denotes the set of top 50 retrieval results of q).

Feature Description Total

** Query-dependent:

NumTerms Number of terms of q after removing stopwords 1

Quest Whether q is a question? 1

** Query-independent:

* Feedback documents-based:

SongEtAl The set of 11 features described in [19] (excepting the feature about the number 11

of terms in q)

AvgPMI Average mutual information score between the terms of q and the top 10 terms 1

that co-occur a lot with the terms of q in D

ClarityScore Clarity score of q computed on D and the whole collection [9] 1

* Wikipedia-based:

NumInterp Number of (possible) interpretations of q in the Wikipedia disambiguation page of q 1

WikiLength Wikipedia page length (number of different words) that matches with q 1

* Query logs-based:

NumClicks Max, Min and average number of clicked URLs for q in all the sessions 3

PercentageClicks Percentage of shared clicked URLs between different users who issued q 1

ClickEntropy Click entropy of the query q [11] 1

NumSessions Total number of sessions with q 1

SessionLength Max, Min and average session duration (in seconds) with q 3

NumTermsReform Total number of different terms added by users to reformulate q in all the sessions 1

ReformLength Max, Min and average number of terms added by users to reformulate q 3

in all the sessions

* ConceptNet-based:

NumDiffNodes Number of different adjacent nodes that are related to the nodes of the graph of q 1

AvgCommonNodes Average number of common nodes shared between the nodes of the graph of q 1

(i.e. nodes that are connected to at least two edges)

NumDiffRelations Number of different relation types defined between the adjacent nodes in the graph of q 1

Grand Total 33

helps to make a clearer description of the user). Concerning
the second feature, we hypothesize that if a query is a ques-
tion, the user is more likely looking for a narrow and specific
answer. For instance, by issuing a query like “what is a nat-
ural number” (query #95), the user is looking for a precise
definition of a natural number, and the user intent behind
such kind of queries is clear. However, this hypothesis re-
quires a further investigation in the future to be confirmed.

For the query-independent features, we take advantage of
several heterogeneous resources to derive different features,
and we define four resource-based features accordingly. It is
worth noting that, for some queries that do not appear in
some resource, we cannot extract any feature for that query
from the resource. In that case, the corresponding features’
values are set to 0. Some of the features from feedback doc-
ument are from the previous work of Song et al. [19]. We
used the same experimental setting described in [19] in order
to categorize the top 50 returned documents returned for a
given query. The idea is that, classifying a query consists
of categorizing the feedback documents of that query into
at least one of the predefined categories 5. Basically, it is
expected that feedback documents of ambiguous queries cor-
respond to more than one category and those of clear queries
correspond to solely one category. Also, we argue that the

5We use the 29 predefined categories described in
http://www.ccc.ipt.pt/~ricardo/datasets/GISQC_DS.html

ClarityScore feature introduced in [9] is an important fea-
ture in our query classifier, since this is an indicator of the
ambiguity level of a query.

Concerning Wikipedia, we derive solely two features: Nu-

mInterp and WikiLength which compute the number of pos-
sible interpretations of q in the Wikipedia disambiguation
page, and the number of different words that appear in
the Wikipedia page of q, respectively. The first feature
(NumInterp) is mainly used to estimate whether a query is
ambiguous or not. Indeed, an ambiguous query usually has
different interpretations, and in most of the cases, it has dif-
ferent interpretations in the corresponding Wikipedia disam-
biguation page. The idea behind the use of the second fea-
ture (WikiLength) is that, the more a Wikipedia page sug-
gests different words (which are candidate expansion terms
for q), the less clear the query is. This is because, when the
query is clear, there is a limited number of possible aspects
to which the user is looking for. Consequently, the number
of expansion terms regarding to that query should also be
limited.

For the features based on query logs, we consider the
query reformulations, the click-through data and the query
sessions to derive classification features. Indeed, when the
query is ambiguous, different users have different informa-
tion needs, and thus, their behaviors are diverse, e.g., the
clicked URLs from one user may be very different from those
clicked by another user, because these users give different in-
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terpretations to the same (ambiguous) query. In contrast,
when the query is clear, it is generally expected that most of
the users are seeking for the same information need, yielding
to almost the same clicked URLs. For instance, for the fea-
ture PercentageClicks, the more there are different users
sharing the same clicked URLs for the query, the more the
considered query is clear, and vice versa. Also, the less users
added terms to reformulate their query, the more this query
is clear.

Finally, the three considered features based on Concept-
Net are calculated on the graph of the query (if the query
appears in ConceptNet). The idea of deriving such features
is from our observations when comparing the graphs of am-
biguous, broad and clear queries in ConceptNet. In partic-
ular, we found that the nodes in the graph of ambiguous
queries are generally unconnected. This is intuitive because
they correspond to different pieces of information that are
not related (apart from the common ambiguous word). For
example, the two interpretations ‘programming language’
and ‘island’ of the same ambiguous query“java”do not share
any common node in the graph of ConceptNet. On the other
hand, we also observed that the nodes in the graph of broad
and clear queries are often connected because they share
some common aspects.

3.2 Query Disambiguation and Predicting Sub-
topic Importance

Once we classified each query into one of the three target
classes (ambiguous, broad, clear), we now disambiguate the
ambiguous queries to generate the first level of subtopics,
which corresponds to the query interpretations. Follow-
ing existing works in literature which show the usefulness
of Wikipedia for disambiguation task (such as [6, 17, 20]),
we also use Wikipedia disambiguation pages, together with
query logs, to find the query interpretations. First, we match
each ambiguous query with its Wikipedia disambiguation
page. This leads to a first set of query interpretations. How-
ever, only a few of these interpretations correspond to the
user interest. Therefore, if the query appears in the log
(which is the case of the ambiguous queries that we consider
in this work), then we collect all the expansion terms added
by users in their sessions to reformulate the query and match
these terms with the Wikipedia disambiguation pages.

We now compute a score for each Wikipedia disambigua-
tion page regarding to the original query, as follows:

scoreq(i) =
nq(i)

|Eq|
(10)

where q is the original (ambiguous) query, Eq is the set of
different expansion terms added by users in the logs to re-
formulate q, and nq(i) is the number of terms from Eq that
appear in the ith Wikipedia page of q. Of course, we normal-
ize these scores for all disambiguation pages corresponding
to query q to make them comparable.

At the end, we keep an interpretation of q if its score is
higher than a threshold value (in our experiments, we set
this threshold value to 0.1). If more than five interpreta-
tions have scores higher than our threshold, we keep only
the first five strongest interpretations since at most five in-
terpretations should be returned. We call each possible in-
terpretations of q a ‘sub-query’.

If q is broad, we directly apply our embedding framework
described in Section 2 to estimate the aspect relative im-

portance. If q is ambiguous, we systematically apply our
embedding framework for each sub-query of q. Finally, the
interpretation relative importance of each ambiguous query
is estimated using Equation 10. Since there is no need to
return aspects for clear queries (as suggested by the NTCIR
organizers), we decide not to apply our embedding frame-
work for that kind of queries.

4. DOCUMENT RANKING SUB-TASK
The second sub-task to which we participated this year is

document ranking, which consists of returning a diversified
ranked list of documents, for each query. We adopt a se-
lective diversification strategy, depending on the query class
(ambiguous, broad, clear). First, if the query is clear, we do
not diversify results and simply rely on the documents re-
turned by a standard retrieval model (such as KL language
model). This strategy is used because we observed that di-
versifying search results for clear queries does not improve
search results, and instead can decrease the performance of
search results in terms of relevance and diversity 6. Second,
we expand each broad query by using the set of expansion
terms (with their weights) that we obtained by our embed-
ding framework, and report the search results of these ex-
panded queries using Indri. Finally, for ambiguous queries,
we report the search results of each sub-query after being
expanded using our embedding framework, and then com-
bine the different sets of documents into a single one. At
each iteration, we greedily select the document d∗ according
to this formula:

d∗ = argmaxd∈∪Di−S(
rel(d) · scoreq(i)

rank(d)
) (11)

where Di is the set of documents corresponding to the ith

sub-query; S is the set of documents already selected; scoreq(i)
is the score computed for the ith sub-query according to
Equation 10; rank(d) is the rank of document d in its set;
and rel(d) denotes the normalized relevance score of docu-
ment d 7.

5. EXPERIMENTAL SETTING
Document collection and query set. We indexed the
collection of documents ClueWeb12-B13 8 by using the In-
dri/Lemur toolkit. Both the index and the queries were
stopped using the INQUERY stoplist, without stemming.
Table 2 reports some statistics of our index. Our baseline
is KL language model with Dirichlet smoothing (µ = 2000).
The test topics consists of a set of 50 English queries col-
lected from both Sogou and Bing search logs. These queries
are from different classes (ambiguous, broad, and clear).

Used resources. In our participation of this year, we used
five different resources that were available for us to collect
expansion terms for subtopic mining sub-task:

6To make such observation, we considered a subset of queries
from TREC 2009, 2010 and 2011 Web tracks, that we judged
as clear queries by using our classifier, and compared the
performance of search results for these queries, before and
after diversification. Overall, we observed that diversifying
search results for clear queries does not really improve the
overall performance.
7We use the language-model normalization formula, that is

x = exp(x)P
x′ exp(x′) .

8http://lemurproject.org/clueweb12
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Table 2: Statistics of our index.

Documents 52,343,021
Unique Terms 163,310,576
Total Terms 39,795,552,546
Size (compressed) 389 GB
Size (uncompressed) 1.95 TB

(1) The last version of ConceptNet 9 which encompasses
8.7M assertions shared between 3.9M nodes;
(2) The English Wikipedia dumps of July 8th, 2013 which
contains 4.3M English articles;
(3) The log data of Microsoft Live Search 2006, which spans
over one month (starting from May 1st) consisting of almost
14.9M queries shared between around 5.4M user sessions;
(4) The top 50 results returned for the original query (feed-
back documents);
(5) The query suggestions from Bing, Google and Yahoo!
provided by the NTCIR-10 organizers for INTENT2 10, as
an additional resource. Note that the training query topic
set of INTENT2 is completely different from the test queries
for NTCIR-11 IMine task of this year, which makes difficult
to learn much from the suggestions collected last year for a
different set of queries. Despite this difference between train-
ing and test topics, we used this data yet to assess whether
query suggestions can help to improve our results.

Query classification. For the query classification task,
we used SVM-Light 11 which provides an implementation
of a non linear SVM (with RBF kernel). During these ex-
periments, the parameters for SVM are set to their default
values. When learning our query classifier, we used the set
of features that we already defined (see Table 1), and use
the publicly available set of 450 training queries 12.

Parameter Setting. In our model, we have a unique pa-
rameter than should be set, that is β (in Formula 3) which
controls the trade-off between relevance and non-redundancy
when selecting expansion terms from different resources. This
parameter is determined by using the query sets from TREC
2009 and TREC 2010 Web tracks for training while the
query set from TREC 2011 Web track is used for test. Dur-
ing this procedure, we optimize for α-nDCG [8] at cutt-off
10. Note that the relevance judgments for these three query
sets are available by TREC assessors, and that these topics
use the ClueWeb09 (category B) as a document collection.

6. RESULTS
In this section, we describe the three runs that we submit-

ted for each sub-task, then we make a comparison between
these runs and discuss our results.

6.1 Description of the Runs
During our participation, we adopted three methodolo-

gies, and submit one run for each methodology for subtopic

9http://conceptnet5.media.mit.edu
10http://research.nii.ac.jp/ntcir/workshop/OnlineProc
eedings10/NTCIR/Evaluations/INTENT/ntc10-INTENT2-
eval.htm

11http://svmlight.joachims.org
12http://www.ccc.ipt.pt/~ricardo/datasets/GISQC_DS.html

mining. Each of the three methodologies leads to a different
set of expansion terms for each test query. Each submitted
run for document ranking sub-task corresponds to the re-
trieval results of the expanded query resulted in the subtopic
mining sub-task. So there is a strict relation between the
submitted runs in the two sub-tasks (E.g., ”UM13-D-E-1A”
run for document ranking sub-task matches with ”UM13-S-
E-1A” run for subtopic mining sub-task).

The three runs are as follows:
(1) 1st run :: UM13-S-E-1A (UM13-D-E-1A): We use
an explicit modeling of query aspects based on embedding,
by incorporating five resources: query logs, Wikipedia, Con-
ceptNet, documents feedback, and the query suggestions
from Bing, Google, and Yahoo!.
(2) 2nd run :: UM13-S-E-2A (UM13-D-E-2A): We use
an explicit modeling of query aspects based on embedding,
by incorporating four resources (query logs, Wikipedia, Con-
ceptNet, documents feedback).
(3) 3rd run :: UM13-S-E-3A (UM13-D-E-3A): We use
an explicit modeling of query aspects based on embedding,
by incorporating one single external resource (query logs).

6.2 Performance of our Query Classifier
In this section, we evaluate the performance of our clas-

sifier. To do that, we use the standard metrics of precision,
recall and F1-measure. In the query classification context,
these metrics are defined as follows:

Precisionx =
Number of queries correctly tagged as x

Number of queries tagged as x
(12)

Recallx =
Number of queries correctly tagged as x

Number of queries whose class is x
(13)

F1x =
2 · Precisionx ·Recallx
Precionx +Recallx

(14)

Here, x could be one of the three target classes, i.e., am-
biguous or broad or clear. In Table 3, we report the per-
formance of our classifier in terms of precision, recall and
F1-measure for each of the three target classes.

Table 3: Performance of our query classifier.

Query Class (x) Precisionx Recallx F1x

ambiguous (a) 75.00% 56.30% 64.30%
broad (b) 44.83% 76.47% 56.52%
clear (c) 88.89% 47.06% 61.54%

From these statistics, we observe that our classifier can
correctly classify about 60% of the queries. In particular,
we found out that our classifier fails to distinguish between
broad and clear queries, and it can better distinguish am-
biguous queries from non-ambiguous ones. Our observation
is in line with the existing work in query classification, such
as [19]. Indeed, a clear query (e.g., query #95: “what is a
natural number”) has a specific meaning and overs a narrow
topic (e.g., the precise and specific definition of a natural
number for the query #95). A broad query (e.g., query
#70: “lost season 5”) covers a variety of subtopics, but
these subtopics tend to overlap in general since they share
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an amount of information (e.g., aspects ‘series’, ‘download’
and ‘information’ for the query #70 are almost about the
same user intent, which is downloading information about
the series of lost season 5 ). This overlap between the as-
pects of a broad query make the behavior of a broad similar
to that of a clear query, which explains why our classifier
fails to distinguish between broad and clear queries. These
observations, however, need a further and deeper investiga-
tion in the future to be confirmed. Also, we intend to better
improve the performance of our classifier in the future by
collecting more important features.

6.3 Results and Discussion
The results of our three runs for subtopic mining sub-task

and document ranking sub-task are reported in Table 4 and
Table 5, respectively. The results are computed on a set of
evaluation metrics proposed for subtopic mining [15]. These
metrics include Hscore which measures the quality of the hi-
erarchical structure, i.e., whether the second-level subtopic
is correctly assigned to the first-level one; Fscore, which mea-
sures the quality of the first-level subtopic, i.e., whether
the submitted first-level subtopics are correctly ranked and
whether all important first-level subtopics are found; Sscore,
which measures the quality of the second level subtopics;
and finally H-measures, which is a combination of the three
previous metrics (Hscore, Fscore and Sscore) [15].

Table 4: Results of our three runs for subtopic mining
sub-task (over 33 unclear topics).

Hscore Fscore Sscore H-measure
UM13-S-E-1A 0.2056 0.1624 0.0059 0.0047
UM13-S-E-2A 0.2064 0.1624 0.0059 0.0049
UM13-S-E-3A 0.1766 0.1624 0.0049 0.0037

Table 5: Results of our three runs for document ranking
sub-task (over all 50 topics).

Coarse-grain Fine-grain
results results

UM13-D-E-1A 0.6254 0.5566
UM13-D-E-2A 0.6001 0.5309
UM13-D-E-3A 0.4474 0.3770

From Table 4, we observe that the best performance for
subtopic mining is obtained by the second run. However,
the difference compared to the first run is really small. For
example, in both first and second run, we obtained the same
Fscore and Sscore, and the difference in term of Hscore and
H-measure is 0.0008 and 0.0002, respectively. Recall that
in both runs, we used the four typical resources (Concept-
Net, Wikipedia, query logs and feedback documents), but
in the first run, query suggestions are used as well. From
these results, it seems that more resources do not neces-
sarily guarantee better results. A possible reason is that
when more resources are used, the risk of selecting noise ex-
pansion terms (i.e., aspects) becomes higher. Maybe, our
observation that query suggestions do not help is due to the
fact that the training and test topic sets are different, which
makes difficult to learn much from such queries. However,
compared with the third run, which only uses one resource,
we see that more resources generally lead to better results.
Indeed, when a single resource is used, it becomes difficult

Figure 1: Example of a topic (“windows”) along with
its first and second level subtopics.

<topic number="61" type="ambiguous">
windows software;1;0.64;0;update;1;0.96;
windows software;1;0.64;0;installer;2;0.91;
windows software;1;0.64;0;8;3;0.89;
windows software;1;0.64;0;versions;4;0.82;
windows software;1;0.64;0;license;5;0.75;
windows software;1;0.64;0;defender;6;0.63;
windows software;1;0.64;0;replacement;7;0.61;
windows software;1;0.64;0;recovery;8;0.54;
windows software;1;0.64;0;vista;9;0.41;
windows software;1;0.64;0;live;10;0.29;
windows house;2;0.35;0;catalog;1;0.90;
windows house;2;0.35;0;treatment;2;0.82;
windows house;2;0.35;0;glass;3;0.81;
windows house;2;0.35;0;paint;4;0.78;
windows house;2;0.35;0;pictures;5;0.77;
windows house;2;0.35;0;construction;6;0.63;
windows house;2;0.35;0;sizes;7;0.55;
windows house;2;0.35;0;tinting;8;0.49;
windows house;2;0.35;0;manufacturer;9;0.31;
windows house;2;0.35;0;pulls;10;0.27;

</topic>

to ensure a good coverage of the different aspects of the
query. Finally, it is worth noting that the results that we
obtained for subtopic mining are very sensitive to the quality
of our query classifier. For example, if an ambiguous query
is labeled as non-ambiguous (i.e., broad or clear) by our
classifier, then H-score will be low for such query due to the
low quality of the hierarchical structure, and consequently,
a low value of S-score.

Figure 1 shows an example of a topic (“windows”) along
with its identified aspects. The aspects were obtained using
our first run. From Figure 1, we observe that this topic has
two level subtopics. The first level corresponds to the differ-
ent interpretations of the (ambiguous) query, that is software
and house, with their corresponding weights 0.64 and 0.35,
respectively. For each of the first level subtopics, we iden-
tified 10 aspects, accordingly with their weights. E.g., vista
is the 9th aspect of query “windows” which is related to the
first level subtopic software, and its weight is 0.41.

For the document ranking sub-task to which we partic-
ipated, the best performance were obtained using the first
method (see Table 5), and again, we observed that using
several resources leads to a better results than using a sin-
gle one. For a further understanding of the performance of
each method, we also report in Table 6 and Table 7 more
detailed statistics of the three runs for document ranking,
over 33 unclear queries.

For both coarse-grain and fine-grain results, our first run
outperforms the two other ones in all adhoc and diversity
measures (excepting in ERR measure in which the second
run provides a better score than the first one, but the dif-
ference is relatively small). In particular, I-rec@10 mea-
sures the subtopic recall which evaluates the proportion of
subtopics covered by documents. For this measure, we ob-
tained a good coverage of aspects by using our first and
second method (about 80% and 75% in coarse-grain results,
and 63% and 59% in fine-grain results).
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Table 6: Detailed coarse-grain results of our three runs for document ranking sub-task (over 33 unclear topics).

AP@10 RBP nDCG@10 ERR@10 I-rec@10 D#-nDCG@10
UM13-D-E-1A 0.5479 0.1655 0.5108 0.4236 0.7899 0.6511
UM13-D-E-2A 0.4782 0.1489 0.4750 0.4251 0.7520 0.6137
UM13-D-E-3A 0.2520 0.1025 0.3162 0.2880 0.5692 0.4397

Table 7: Detailed fine-grain results of our three runs for document ranking sub-task (over 33 unclear topics).

AP@10 RBP nDCG@10 ERR@10 I-rec@10 D#-nDCG@10
UM13-D-E-1A 0.5479 0.1480 0.4629 0.2628 0.6310 0.5469
UM13-D-E-2A 0.4782 0.1340 0.4301 0.2602 0.5874 0.5089
UM13-D-E-3A 0.2520 0.0915 0.2901 0.1807 0.3798 0.3331

7. CONCLUSION AND FUTURE WORK
In this paper, we described our participation of this year

to the NTCIR-11 IMine task, for both subtopic mining and
document ranking sub-tasks. We experimented with a new
approach for diversified query expansion based on embed-
ding which selects (good) expansion terms from a set of re-
sources. Related expansion terms are grouped together since
they correspond to the same semantic aspect. Our results
suggest that using more resources can generally yield better
results, especially when ranking documents. In particular,
in our best run for document ranking, we obtained good re-
sults in both adhoc and diversity results, and we were ranked
No. 2 among all 15 runs.

Several issues could be investigated in our future work.
For example, the resources with which we experimented were
equally weighted. However, in practice different resources
should have different weights depending on the query. Also,
in our experiments on subtopic mining, we found that query
suggestions is not so helpful to improve the performance
of our model in terms of selecting good expansion terms
for the query. However, further investigation is required to
understand the reasons.
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