

THUIR at NTCIR-11 IMine Task

Cheng Luo, Xin Li, Alisher Khodzhaev, Fei Chen, Keyang Xu, Yujie Cao, Yiqun Liu, Min Zhang, Shaoping Ma **Department of Computer Science and Technology**, Tsinghua University, Beijing, China c-luo12@mails.tsinghua.edu.cn

Subtopic Mining

Framework

We propose a 3-step framework in Subtopic Mining Subtask: Candidate Mining, Candidate Ranking and Hierarchy Construction.

RandomWalk on Query-URL

Experimental Results

RUNNAME	SYSTEM DESC.	H-Measure
THUSAM-C-1A	[Bottom Up] Cluster SLS candidate, find the highest-frequency n-gram which can match one of the candidate as FLSs.	0.2773
THUSAM-C-2A	[Bottom Up] Cluster SLS candidate, for each cluster, Learning to Rank the	0.2204

Notion: FLS: First Level Subtopic SLS: Second Level Subtopic KB Aided: Knowledge-Based Aided

Candidate Mining From Various Resources

- Similar Queries from Query Recommendation, Random Walk on \bigcirc *Query-URL Bipartite Graph* and *Query2vec*.
- <u>Query + Query Aspect</u> from *Query Facets*, Wikipedia Indexes and Disambiguation Items.

n-gram, find the best ones as FLSs. [KB Aided] For queries which appears in Encyclopedia, use the THUSAM-C-3A 0.1400 disambiguation items (indexes) as FLS and classify other candidates. THUSAM-C-4A [Top Down] Learning to Rank SLS candidates, use heuristic greedy select 0.1404 algorithm to find FLSs, and classify other candidates. THUSAM-C-5A [Top Down] Learning to Rank n-grams as FLSs and classify other 0.2224 candidates. [Bottom Up] Extraction from multiple resources (all) + tuned bottom-up 0.4257 **THUSAM-E-1A** hierarchical clustering [Top Down] Extraction from multiple resources + up-bottom approach 0.1179 THUSAM-E-2A

Document Ranking

Documents Retrieval Models

Probabilistic model is leveraged for document ranking, which is based on BM25 and combined with our previous proposed word pair model.

$$\begin{split} R(Q,D) &= W_{BM25} + \alpha_1 \cdot W_{wp} \\ W_{BM25} &= \sum_{i=1}^m \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \cdot \frac{f(q_i,D) \cdot (k_1 + 1)}{f(q_i,D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{avgdl})} \\ W_{wp} &= \sum_{i=1}^m \log \frac{N - n(q_iq_{i+1}) + 0.5}{n(q_iq_{i+1}) + 0.5} \cdot \frac{f(q_iq_{i+1},D) \cdot (k_1 + 1)}{f(q_iq_{i+1},D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{avgdl})} \end{split}$$

Result re-ranking with HITS

Query2vec \bigcirc

- Query \leftarrow words
- Session ← Sentence
- Each query can be represented as a vector.
- Find Similar Queries with cosine similarity.

Candidate Ranking with LTR Algorithms

- Goal: Find the high quality subtopic candidates
- Rank candidates using Learning To Rank algorithm \bullet
- Training Set: ranked subtopics from NTCIR Intent-2 data
- Feature: Similarity between query and candidate Text similarity: Length difference, Jaccard similarity, Edit Distance
 - Search Result Similarity: number of shared results...
- Metric to optimize: NDCG@50

Method	NDCG@50	NDCG@50		波斯猫	云轩	遮天
	training	testing	1	波斯猫歌词	云轩阁 阳神	4399太古遮天
MART	0.8012	0.6951	2	波斯猫歌曲	云轩阁小说	遮天txt下载
RankNet	0.683	0 6675	3	波斯猫 眼睛	云轩阁 盘龙	遮天快眼看书
I AIIKI VOL			4	波斯猫 歌词	云轩阁小说网	太古遮天官网
RankBoost	0.743	0.7303	5	波斯猫的眼睛	云轩阁txt下载	百度遮天官网
AdaRank	0.7049	0.7034		•••		
Coordinate Ascent	0.7037	0.676	-5	孟买	德州	书库
LambdaMART	0.8274	0.688	-4	蜃	嘉兴	题材
			-3	浓度	海口	媒体
ListNet	0.6912	0.6959	-2	洛威拿	邢台	类型
Random Forests	0.7896	0.6981	-1	眼大	金华	唐砖

Top m documents sorted by either Authority or Hub Value in the search result are placed up to the front. Its new rank is determined as follows:

 $R_{new} = R_{old} - R_{old} \times (Authority + Hub)$

Pruned Exhaustive Search

Previous studies have demonstrated that finding the optimal solution for diversified search is NP-hard THEOREM: Given k=l+1, if there exists a document pair d_1 and d_k that satisfies:

$$(G_{kl} - G_{kk}) - (G_{ll} - G_{lk}) > 0$$

The document list containing d_l in its *l*-th slot and d_k in its *k*-slot cannot be optimal diversified search result.

Notion:

 $\underline{G_{kl}}$ denotes the score for doc_k in the *l*-th slot

Pruned Exhaustive Search based on the THEOREM

ALGORITHM Pruned Exhaustive Search

INPUT all the selected documents D, the required number of docments L $I S \leftarrow \Phi, maxG \leftarrow 0$

2 function **recursion_full_search**(curd,leftD,d_i,curG)

if(*leftD* is Φ or /curd/=L) and curG>maxG

- $maxG \leftarrow curG$

Hierarchy Construction in Three Ways

 <u>Top-Down Hierarchy Construction</u> Find the FLSs first and classify other candidates into FLS categories A heuristic method to pick out FLSs.

Score = $a * Novelty - b * \frac{candidate \ length}{query \ length} + c * Relvance + d * Frequence$

 Bottom-Up Hierarchy Construction Cluster all the candidates, for each cluster, choose the best one as FLS N-gram ranked by Learning to Rank Algorithms/Metric to optimize:P@5

- Knowledge Base Aided Construction Use the Wikipedia Indexes and Disambiguation Items as FLSs Classify all the Candidates into FLS categories
- Clustering: Using TF-IDF vectors extracted from snippets/titles on SERP • Classifying: Linear Regression Classifier learnt from INTENT-2 results.

- *S*←*curD*
- else

|8|

- $n \leftarrow |curD|$
- foreach d_i in *leftD*
 - if $\overline{(Gin-Gi(n+1))} (Gjn-Gj(n+1)) \ge 0$
- recursion_full_search(curD $\cup \{d_i\}, leftD / \{d_i\}, d_i, G_{i1}$) 10

11 end function

12 foreach d_i in D

recursion_full_search({ d_i }, D / { d_i }, d_i , G_{i1}) 14 return S

Experimental Results

RUNNAME	SYSTEM DESC.	Coarse-grained D#nDCG	Fine-grained D#nDCG
THUSAM-C-1A	Exhaustive search with window size 4. The SM result is from Subtopic N-gram Learning to rank list.	0.6965	0.6127
THUSAM-C-1B	Exhaustive search with window size 5. The SM result is from Subtopic N-gram Learning to rank list.	0.6943	0.6106
THUSAM-C-2A	Exhaustive search with window size 4. The SM result is from heuristic greedy select from subtopics.	0.3502	0.2623
THUSAM-C-2B	Exhaustive search with window size 5. The SM result is from heuristic greedy select from subtopics.	0.3697	0.2711