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ABSTRACT 

This year’s MedNLP-2 [1] has two tasks: Extraction task (Task 

1) and Normalization task (Task 2). We tested both machine 

learning based methods and an ad-hoc rule-based method for the 

two tasks. For the Extraction Task, a two-stage approach (first, 

the machine learning based method is applied to identify c tags, 

and second, the rule-based method is applied to modality 

features) obtained higher results. For the Normalization Task, 

the machine learning based method obtained higher results for 

training data, but the simple pattern-matching method obtained 

higher results for test data.  
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Task 1 (Extraction Task) 

Task 2 (Normalization Task) 
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1. INTRODUCTION 
Machine learning based and rule-based methods are the two 

main approaches for extracting useful information from natural 

language texts. To clarify their pros and cons, we applied both 

approaches to this year’s MedNLP-2 tasks: Extraction Task 

(Task 1) and Normalization Task (Task 2). 

2. Task 1 (Extraction Task) 

2.1 Approach 
We formalized the information extraction task as a sequential 

labeling problem. We adopted a conditional random field (CRF) 

[2] as the learning algorithm. We used CRFsuite [3], which is an 

implementation of first order linear chain CRF. We also used 

MeCab [4] as a Japanese morphological analyzer and CaboCha 

[5] as a Japanese dependency parser.  

2.2 Basic Features 
We used the following features to capture the characteristics of 

the token: surface, part-of-speech, and dictionary matching. The 

dictionary feature is a binary expression that returns one if a 

word is in the dictionary and zero otherwise. 

We prepared ten kinds of dictionaries featuring age expressions, 

organ names, Japanese era names, family names, time 

expressions, names of hospital departments, disease names from 

the Japanese version of Wikipedia, Chinese characters related to 

diseases, expressions of suspicion, and negative expressions. 

These dictionaries were created on the basis of the rules from 

training data and Wikipedia. We also used a sentence feature 

based on the field name to which the sentence belongs. 

2.3 Unsupervised Feature Learning 
In addition to the basic features, we used clustering-based word 

features [6] to estimate clusters of words that appear only in test 

data. These clusters can be learned from unlabeled data by using 

Brown's algorithm [7], which clusters words to maximize the 

mutual information of bigrams. Brown clustering is a 

hierarchical clustering algorithm, which means we can choose 

the granularity of clustering after the learning process has 

finished. 

We examined two kinds of Brown features: those created from 

training and test data related to the MedNLP-2 task (1,000 

categories) and those created from Japanese Wikipedia (1000 

categories).  

2.4 Rule-based method 

We applied the machine learning method to identify c tags and 

then the rule-based method to identify time tags and modality 

tags. The patterns are developed for NTCIR-10 MedNLP Task 

[8]. The details are explained in our previous work [9]. 

 

3. Task 2 (Normalization Task) 

3.1 Approach 
We formalized the normalization task as a chunk classification 

problem, and an information retrieval problem. We adopted a 

support vector machine (SVM) as the learning algorithm. We 

used libsvm [10], which is an implementation of the SVM. We 

also tested the simple pattern-matching method as a baseline. 

3.2 Basic Features 
We used the following features to capture the characteristics of 

the chunk: surface, part-of-speeches of the tokens in each chunk 

or neighbors of each chunk, and dictionary matching. The 

surfaces and part-of-speeches were converted into the feature 

vectors, which are the same as those for Task 1. For the 

dictionaries, we used the International Statistical Classification 

of Diseases and Related Health Problems 10th Revision (ICD10). 

The first two to three layers of the matched ICD10 entries were 

used for the dictionary matching features. 
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3.3 Unsupervised Feature Learning 
In addition to the basic features, we used clustering-based word 

features, which are the same as those for Task 1. In Task 2, we 

also used a neural-network based word vector representation 

[11]. We used word2vec [12], which is an implementation of the 

neural network based on the skip-gram model. We examined 50 

to 800 dimensions of word2vec features learned from MedNLP-

2 training, test data, and Japanese Wikipedia. 

 

4. RESULTS 

4.1 Task 1 (Extraction Task) 
The results for Task 1 are shown in Tables 1, 2, and 3. All 

values in the tables are F1 values. 

 

Table 1: Results for training data (c tags and modality)  

 c 
c+ 

family 

c+ 

negation 

c+ 

suspicion 

HCRL-1 
 (ML only) 

85.36 78.12 78.10 46.49 

HCRL-2 

 (ML + Rule) 
85.26 88.89 80.79 72.75 

HCRL-3 
 (ML only) 

85.94 75.97 78.40 50.62 

 

Table 2: Results for test data (F-value) 

 t c 

HCRL-1 (ML only) 85.68 82.61 

HCRL-2 (ML + Rule) 87.07 82.54 

HCRL-3 (ML only) 85.39 83.33 

 

Table 3: Results for test data (NE + modality of c tag) 

 
NE+ 

positive 

NE+ 

family 

NE+ 

negation 

NE+ 

suspicion 

HCRL-1 
 (ML only) 

74.06 86.84 72.87 48.78 

HCRL-2 

 (ML + Rule) 
75.94 86.08 76.67 60.50 

HCRL-3 
 (ML only) 

75.74 89.74 73.59 44.44 

 

HCRL-3 used ICD10 entry names as an additional dictionary. 

 

4.2 Task 2 (Normalization Task) 
 

Table 4:  Results for training data and test data 

 Training data Test data 

HCRL-1 (SVM) 75.7 62.3 

HCRL-2 (SVM + w2v) 75.8 63.5 

HCRL-3 (SVM + Brown) 72.9 60.5 

HCRL-4 (pattern match) 70.7 72.2 

 

The results of HCRL-4 are not submitted because the score for 

training data is relatively low. 

 

5. Conclusion 
For the Extraction Task, a two-stage approach (first, the 

machine learning based method is applied to identify c tags, and 

second, the rule-based method is applied to modality features) 

obtained higher results. For the Normalization Task, the 

machine learning based method obtained higher results for 

training data, but the simple pattern-matching method obtained 

higher results for test data. 
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