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Our Approach in healthcare business 
・Nihon Unisys is promoting information and communication technology 
 (ICT) development based on business results of information platform 
 construction related to medical care and health. 

Our Motivation
・Our next step in business is to secondarily and beneficially utilize the data
 which gather from healthcare facilities. Our Motivation is to research and 
 develop basic techniques to information extraction in medical fields, and 
 review the availability to our medical information system solutions.
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Method design in Task1 (Figure.1)
・Morphological Analysis by Mecab
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Method design in Task2 (Figure.2)
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Task1 (Table.1)
・We could extracted time and condition(only) related expressions in a high 

accuracy. On the other hand it was difficult to extract the modality types, 
especially “Suspicion”.

Task2 (Table.2)
・The result of Task2 is shown in Table 2. We used “GoldStandard+ICD” as 

test data which was distributed by MedNLP-2 organizer as correct answer 
data of Task1.

Modality Extraction in Task1
・It was difficult to extract the modality types in a high accuracy. 

We think that adding more rules to complement our algorithm is needed. 

Consideration of Local recording rule in each hospitals
・It is important to consider the local rule of each hospitals and add these rules 

to the algorithm to use widely as a function of medical information system, 
because each hospital have each rule of recording document.

For beneficial Data Mining
・It is very important not only to develop these supporting system but also to 

consider a purpose to analysis data which are extracted from medical 
data ,because the requirements of extracting data depend strongly on the 
purposes of data analysis. We think that each approaches are needed.

Introduction Results

Figure.2

IOB2 Tag Precision Recall F

Time 88.14 74.53 74.53

Condition(Only) 81.83 69.38 75.09

Condition(Positive) 70.17 56.34 62.50

Condition(Negative) 51.05 54.61 52.77

Condition(Suspicion) 45.45 12.20 19.23

Condition(Family) 66.67 53.85 59.57

Table.1

Data Accuracy (%)
GoldStandard+ICD 69.40

Table.2

Figure.1

Input Data Sample
8月2日頃から腹痛が生じると
ともに，嘔気・嘔吐出現

Output Data Sample
<t> 8月2日頃</t>から <c icd="R104">腹痛
</c>が生じるとともに， <c icd="R11_">嘔
気</c> ・ <c icd="R11_">嘔吐</c>出現

Task 1) Extract complaint and diagnosis , and it’s modality attributes 
   (modality="negation", "suspicion", "family")
Task 2) Give ICD-10 code on complaint and diagnosis
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