

MathWebSearch: Low-Latency Unification-based Full-Text Search

Radu Hambasan, Michael Kohlhase, Corneliu Prodescu http://kwarc.info

MathWebSearch is a content-based search engine that focuses on fast query answering for interactive applications. It is currently restricted to exact formula search via unification queries combined with keyword search. NTCIR-11 System: http://arxivsearch.mathweb.org/ Zentralblatt Math: https://zbmath.org/formulae/ Excel Search: http://search.mathweb.org/xl/

Formula Search with Named Wildcards/Keywords

Unification Queries: Applicable Theorem Search

Approximate $\int_{\mathbb{R}^2} |\sin(t)\cos(t)| dt$ from above? \rightarrow Ask MATHWEBSEARCH! It finds Hölder's inequality with universal variables in the index

 $\int_{D} |f(x)g(x)| \, dx \leq (\int_{D} |f(x)|^p \, dx)^{\frac{1}{p}} (\int_{D} |g(x)|^q \, dx)^{\frac{1}{q}}$

arXiv.org: : Oration for Andrew Wiles
Title: Oration for Andrew Wiles arXiv Link: http://arxiv.org/abs/math/9807081 Show substitutions Fermat are beautifully documented in John Lynch's BBC Horizon documentary; I particularly like the bit at an aggressive British research department. Fermat-Wiles in three minutes Fermat's Last Theorem as the sum of two perfect nth powers. In other words, for any math1 , the equation
$a^n + b^n = c^n$
(1) does curves accumulated since the time of Fermat and Euler. The deepest fact about elliptic curves, and

phrase from Fermat: Hoc elogium exiguitas non caperet . In one sense, all this talk of Fermat and what's

with substitution $x \mapsto t, f \mapsto sin, g \mapsto cos, D \mapsto \mathbb{R}^2 \rightsquigarrow Solution$:

 $\int_{\mathbb{R}^{2}} |\sin(t)\cos(t)| \, dt \leq (\int_{\mathbb{R}^{2}} |\sin(t)|^{p} \, dt)^{\frac{1}{p}} (\int_{\mathbb{R}^{2}} |\cos(t)|^{q} \, dt)^{\frac{1}{q}}$

Variant query $I_{\mathbb{R}^2} | \sin(t) \cos(2t) | dt$ will not find Hölder's inequality since that would introduce inconsistent substitutions $x \mapsto t$ and $x \mapsto 2t$.

The MathWebSearch backend is realized as a RESTful web service that keeps a formula index in memory and hit URIs in database. MathWebSearch front-ends post MathML queries via HTTP and receive XML results.

System Architecture: Formula Search as Query Expansion

Idea: Formula IDs as "words" in ElasticSearch, ${\rm MATHWEBSEARCH}$ for Query Expansion

i) Replace text formulae by their index id \rightsquigarrow index in ElasticSearch *ii*) Unify query formulae via MATHWEBSEARCH \rightsquigarrow replace by ids in query *iii*) Augment ElasticSearch for math results presentation (as above)

Substitution Tree Indexing

 $u_2^1, u_2^2 \quad u_3^1, u_3^2$

 Represent Mathematical Formulae in Content MathML extended with query variables

 Insert them into an in-memory "index": a formula structure tree that shares common substructures

• unification by "dropping queries through tree"

leaves correspond to unifiable formulae

• leaves are mapped to result occurrence URIs u_i^j (in database)

Results Evaluation: NTCIR-11 dataset (~ 8.3 million paragraphs from 105,539 XHTML+MathML documents) ~ 224 GB harvest data, 584 M SubFormulae (63M unique)[16h harvesting] ~ 15.9 GB Formula Index (in RAM) + 63 GBs ElasticSearch Index (on disk)[45h indexing, 90s restore from disk] $\sim query$ answer times 3 - 70ms (avg = 11ms) for MathWebSearch, longer for ElasticSearch, even longer for result presentation

 u_1^1,u_1^2

MATHWEBSEARCH aims at high-quality hits only (randomly extend to 1000)
high precision (matching formulae + text) → 26/50 hits only (32.1/query)
low precision (matching only text) → 23/50 hits
no hits → 1/50, common keyword (two spellings) no formula matches.

a) 50% of top5 hits judged "relevant", 79% "partially relevant"
b) excellent precision for formula queries with ≥ 2 query variables
c) side-effect of MATHWEBSEARCH query expansion: keywords used for ranking formula hits.

Current Work: Faceted Search, Ranking, Extensions, Embedding, Unit Search

Searching the Mathematical Knowledge Space • Generating formula schemata for faceted search Anti-Unification • Special treatment of literal data types (e.g. numbers) search for ranges FlaiSearch **DEMO** • Physics: Search for quantities modulo unit conversion via flatsearch Variables that start with "?" are converted to MWS query variables, the rest are literal. $e = \sum_{n=0}^{\infty} \frac{1}{n!} \cong \text{Euler's Number}$ Semantic search via query expansion (X + Y) + Z == ?qinduced Search http://latin.omdoc.org/math?IntArith?c/assoc assoc:(X + Y) + Z == X + (Y + Z)Justification : Induced statement found in <u>http://latin.omdoc.org/math?IntArith</u> IntArith is a AbelianGroup if we interpret over view <u>c</u> <u>AbelianGroup</u> contains the statement <u>assoc</u> rep. $assoc:(X \circ Y) \circ Z == X \circ (Y \circ Z)$