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ABSTRACT
This paper describes the participation of our MCAT search
system in the NTCIR-11 Math-2 Task. The purpose of
this task is to search mathematical expressions using hy-
brid queries containing both formulae and keywords. We
introduce an encoding technique to capture the structure
and content of the mathematical expressions. Each expres-
sion is accompanied by two types of automatically extracted
textual information, namely words in context window and
descriptions. In addition, we examine the improvement in
ranking obtained by utilizing dependency graph of math-
ematical expressions and post-retrieval reranking method.
The results show that the use of description and depen-
dency graph together delivers better ranking performances
than the use of context window. Furthermore, using both
the description and context window together delivers even
better results. The evaluation results also indicate that our
reranking method is effective for improving the ranking per-
formances.
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1. INTRODUCTION
The NTCIR-11 Math-2 Task aims to explore search meth-

ods for retrieving mathematical formulae in scientific docu-
ments. Given a query which contains a target formula ex-
pressed in MathML and several related keywords, each par-
ticipating system is expected to return a ranked list of the
relevant retrieval units containing a formula matching the
query.

Our system in the previous NTCIR Math Pilot Task en-
abled searching for mathematical expressions using queries
that contain both mathematical formulae and keywords. To
enable full-text search, this system associated each indexed
mathematical expression with words found in the fixed con-
text window. However, this type of textual information is
not guaranteed to be capable of representing the mathemati-
cal expressions precisely. In the NTCIR-11 Math-2 Task, we

associate each mathematical expression with descriptions,
which is automatically extracted using a machine learning
method, in addition of words found in context window. How-
ever, from the description extraction results, we found that
several mathematical expressions are not associated with
descriptions. We then introduce a method based on depen-
dency graph of mathematical expressions to compensate this
lack-of-descriptions issue. Furthermore, we apply a post-
retrieval reranking method and investigate its impact over
the ranking performances.

This rest of this paper is organized as follows. Section 2
provides a brief overview of the background and related work
on math retrieval systems. Section 3 explains the indexing
procedure, textual information, dependency graph of math-
ematical expressions, and reranking method. Next, Section
4 presents the results of our submitted results. Finally, our
conclusions are given in Section 5.

2. RELATED WORK
There are six mathematical search systems that are pub-

lished in NTCIR-10 Math Pilot Task [1]. The UC Berkeley
team [12] combined a standard keyword content information
retrieval method with bitmap indexing of math operators
identified as separate XML tags in the MathML structure.
MathWebSearch search engine [10, 8, 9] was built around
the substitution-tree indexing technique [5]. The Masaryk
University MIRMU team [14, 13, 20, 19] focused on the sim-
ilarity search based on enhanced full text search. The NAK
team [6] proposed how to build new indices and how to use
them in order to search for mathematical expressions. The
FSE team [18] proposed to employ a distributed data pro-
cessing system, i.e. Stratosphere [3], that accesses data in
a non-index format. The MCAT team [21] adopted Apache
Solr [2] and introduced three fields dedicated to encoding the
structure and content of a mathematical expression. There
were also additional fields to hold any natural language text
associated with a given expression. The result from this
Math Pilot Task showed that MCAT system [21] was the
top performer in both formula and fulltext search among
the competing systems. In addition, FSE and MCAT teams
enabled full-text search feature in their retrieval methods.

3. OUR APPROACH

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

120



3.1 Indexing Mathematical Expressions

The Problem
MathML defines two different layers: Presentation MathML
and Content MathML. The former expresses the layout of
symbols used to display a mathematical formula, while the
latter encodes its semantics, with no regard to notation. The
reason for this split is the fact that mathematical notation
is quite inconsistent, and symbol set limited: a notation
is commonly reused, and there often exist several different
ways of writing down the same core meaning. For exam-
ple, the derivation of function y = f(x) can be represented

as d
d x
f(x), d f(x)

d x
, d

d x
y, d y

d x
, f ′(x), Dxy, ẏ and more. Con-

versely, the notation y(x+ 1) could represent both an appli-
cation of function y, as well as a multiplication of the value y
to x+1; and the meaning of i in the most common interpre-
tation of ai is very different from that in 3i + 5. Speaking of
the imaginary constant, in fact, there are at least three ways
in common use to represent it: some journals and writers use
the italic i, some the regular i, while Unicode reserves for it
the double-struck i at code point 0x214F (&ImaginaryI; en-
tity in HTML). Thus, understanding a mathematical equa-
tion necessarily involves context: if it is clear from preceding
text or formulae that y is a function, it is safe to conclude
that y(x+ 1) refers to application of this function to x+ 1,
and not multiplication.

This semantic ambiguity of the Presentation MathML is
a large problem for a mathematics search engine. Ideally,
one would translate all queries into the content mark-up:
we assume the users will care more about the meaning of
their query rather than a specific notational form. However,
currently there is no method capable of accurately disam-
biguating the presentation form. While there is ongoing re-
search into this very issue, it is still not at the stage where it
could reliably handle any but the simplest mathematical ex-
pressions. This ambiguity problem is especially acute when
looking at a search query, which will not have the benefit of
context.

The inability to reliably extract the meaning of an expres-
sion affected our method significantly. The first realization
was that we will have to create an index based on the Pre-
sentation MathML, which can be obtained, rather than on
much more appropriate Content MathML, which can’t be.
The second realization was that searching for an exact match

is unfeasible. If a query looks for

n∑
i=0

ai, exact matching will

not find
∑n

i=0 ai — even though both are readily understood
to be the same thing by a human reader. Similarly, a query
for the relationship between velocity and acceleration v = at
would not find v = gt, a special case where acceleration of
gravity is written as g instead of the usual a. Ideally, v = gt
would still be found, but would be ranked lower than the
perfect match, v = at.

Therefore, the method needed to be flexible in order to ac-
count for the notational differences, in some ways similar to
full-text search, yet still encode the structural information
necessary to distinguish x y

z
from x

y
z. We also wanted to be

able to search by context, a very important requirement in
the current task, which would require a full-text search en-
gine. The challenge then is how to incorporate mathematical
search with full-text search.

Our Method
The full-text search requirement was solved easily, by adopt-
ing Apache Solr [2], the most popular open-source full-text
search engine. Starting from this choice, we used the method
described below to index and search the mathematical for-
mulae, and thus provide a flexible, soft-matching, unified
interface for different query types (both formula search and
full-text search).

In our Solr schema, the multi-valued description_XX

fields hold any natural language text associated with a given
expression, where XX is a language identifier. There are three
fields dedicated to encoding the structure and content of a
mathematical expression — opaths, upaths and sisters —
which are described below in detail. Finally, there are also
various other fields serving as keys: the primary key field
gmid, the foreign key gpid identifying the document where
the expression is found, and the key gumid which identifies
different appearances of the same expression within a single
paper as a single class.

Each expression, both at index time and at query time,
is transformed into a sequence of keywords across several
fields. First, the XML expression tree is cleaned up a lit-
tle, in an attempt at basic normalization: it is run through
SnuggleTeX [15] up-conversion semantic enrichment module,
and then unnecessary mrow and mfenced nodes are removed
(since they provide no semantic information other than hi-
erarchy). Next, vertical paths are gathered into the opaths

(ordered paths) field in such a way that ordering is pre-
served. In some cases (such as looking for b + c and trying
to match a+b+c), ordered paths will not be effective, so we
introduce the upaths (unordered paths) field, with exactly
the same information as in opaths but with ordering infor-
mation removed. This vertical path encoding is performed
not only for the expression’s tree, but for each of its sub-
trees as well, to achieve a hit on a(b+ c) for the query b+ c.
The third and final field carrying the expression structure,
sisters, lists the sister nodes in each subtree.

<math>

<mrow>

<msubsup >

<mo>&Sigma;</mo>

<mrow>

<mi>i</mi>

<mo>=</mo>

<mn>0</mn>

</mrow>

<mi>n</mi>

</msubsup >

</mrow>

<msub>

<mi>a</mi>

<mi>i</mi>

</msub>

</math>

Figure 1: MathML example:
∑n

i=0 ai

Figure 1 presents a simple mathematical formula,∑n
i=0 ai, written in MathML. Figure 2 shows an example of

its representation our index. The first opaths encodes the
whole MathML tree. The root of the whole tree, an <mrow>,
is not shown — as explained above, mrow has no semantic
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opaths:
1#msubsup 1#1#mo#Σ 1#2#1#mi#i 1#2#2#mo#=

1#2#3#mn#1 1#3#mi#n 2#msub 2#1#mi#a 2#2#mi#i

opaths:
msubsup 1#mo#Σ 2#1#mi#i 2#2#mo#= 2#3#mn#1

3#mi#n

opaths: 1#mi#i 2#mo#= 3#mn#1

opaths: msub 1#mi#a 2#mi#i

upaths:
#msubsup ##mo#Σ ###mi#i ###mo#= ###mn#1

##mi#n #msub ##mi#a ##mi#i

upaths: msubsup #mo#Σ ##mi#i ##mo#= ##mn#1 #mi#n

upaths: #mi#i #mo#= #mn#1

upaths: msub #mi#a #mi#i

sisters: mi#i mo#= mn#1

sisters: mo#Σ mi#n

sisters: mi#a mi#i

sisters: msubsup msub

Figure 2: Encoding example:
∑n

i=0 ai

value, and so do not explicitly list it in the index. The root
has two children: <msubsup> and <msub> elements, which
is reflected in opaths:1#msubsup 2#msub: the first top-level
child being <msubsup>, and the second <msub>. Grandchil-
dren are given similarly, their position at each level being
specified by consecutive numbers, divided by separators. If
the element is one of the leaf elements (<mo>, <mn> or <mi>),
it also has an additional separator and the representation
of its value. Thus, opaths:1#2#3#mn#1 says that the third
child of the second child of the first top-level element is a
number with a value of 1 (i.e. <mn>1</mn>).

The second row does the same for the sub-expression∑n
i=0; the third for the subscript i = 0; and the fourth

for ai. The sub-expressions n, i, 0 and a have no structure
to encode, so they do not have their own opaths.

As said above, upaths is almost the same, but with or-
dering information removed. Accordingly, upaths:###mn#1
just says that a child of a child of a top-level element is the
number 1.

Because the ordering information is removed for all levels,
not just the lowermost one, in a contrived example of a+b

c+d+e

and c+a
b+e+d

, they will both match equally for the query x
e+c+y

(where the latter is a plausible match, with substitutions
x = a+ b, and y = d). This situation comes about because
opaths are not applicable to any element (e is never first in
its subtree, c is never second, and x and y do not match at
all); while upaths won’t differentiate between sub-elements
of the numerator and the denumerator, and thus equally find
both e and c. To solve this, we introduce the field sisters,
whose role is to group sister elements together, and in this
case boost the score of the first expression where both e and
c are found in the same subtree, over the second expression
where they aren’t.

The opaths, upaths, and sisters fields, which capture
the structure of each mathematical expression, are indexed
as whitespace-tokenized fields, i.e. ‘text ws’ in the default

schema.xml1. On the other hand, descriptions are indexed
as English text, i.e. ‘text en’ in the default schema.xml1.

Matching is then performed by a normal Solr disjunctive
query (using default query parser). It considers the factors
in the query as independent, then modifies the score using
TF/IDF and length normalization. The result is a very flex-
ible, heuristic system that ranks the search results by sim-
ilarity to the query expression, and to a degree avoids the
pitfalls of inconsistent representation. The downside is that
it is too flexible: it is difficult to say where the relevant re-
sults stop and random matches begin; thus we predict higher
recall, but lower precision rates than exact match systems.

3.2 Extracting Textual Information for Math-
ematical Expressions

This paper associates each mathematical expression with
two types of textual information, namely words in context
window and descriptions. To extract words in context win-
dow, we first tokenize sentences which contain any num-
ber of mathematical expressions. For each mathematical
expression, we extract words in context window by taking
ten words preceding and following the expression. On the
other hand, descriptions are extracted automatically using a
support vector machine (SVM) model that is trained using
manually annotated corpus generate for NTCIR-10 Math
Pilot Task [1]. The description extraction task is treated as
a binary classification problem. We first pair each mathe-
matical expression with each noun phrase that exists in the
same sentence as the expression. Subsequently, for each pair,
we extract several features based on sentence patterns, POS
tags, parse trees, and predicate-argument structures. Next,
using these features, we classify the pairs as correct (i.e. the
noun phrase is the description of the expression) or incor-
rect. Further details of our description extraction task was
described in another publication [11]. For the NTCIR-11
Math task, we modified our previous extraction model to use
predicate-argument relations generated by natural language
parser Enju [16] instead of Stanford dependencies generated
by Stanford parser [7, 4], because the use of Enju allows
short parsing time compared to the use of Stanford parser.

To measure the performance of our description extraction
method, we conduct a description extraction experiment on
50 mathematical papers obtained from the NTCIR Math
Understanding Subtask [1]. We set 40 papers to be the
training set and 10 papers to be the test set. In addition,
this experiment uses three metrics to measure the extraction
performance: precision, recall, and F1-score. Furthermore,
the extraction performance is measured using two different
matching scenarios, namely strict matching and soft match-
ing. An extracted description will pass the strict match-
ing evaluation if its position, i.e. start index and length,
is the same as that of a gold-standard description for the
same target mathematical expression. On the other hand,
an extracted description will pass the soft matching evalua-
tion if its position contains, is contained in, or overlaps with
the position of a gold-standard description for the same ex-
pression. Table 1 displays the results of the performance
measurement.

Table 2 shows an example of words in context window and
description. Before indexing the extracted textual informa-

1http://svn.apache.org/viewvc/lucene/dev/trunk/
solr/example/solr/collection1/conf/schema.xml?
view=co&content-type=text/plain
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Table 1: Performance of the description extraction model
Matching Scenarios P R F1
Strict 73.72 45.88 41.40
Soft 80.80 72.77 76.58

tion, several processes are applied to it, such as tokenising
the string, eliminating stop words and any mathematical
expression, and stemming the remaining words.

Table 2: An example of textual information extracted for
the target expression p(x|θ) in a sentence “For several ap-
plications, it is often computationally convenience to work
with the natural logarithm of the likelihood function p(x|θ),
called the log-likelihood.”

Type Example of Textual Information
context to work with the natural logarithm of the

likelihood function called the log-likelihood
description likelihood function

3.3 Developing Dependency Graph of Mathe-
matical Expressions

While words in context window are extracted simply by
taking words preceding and following the expression, de-
scriptions are extracted using a machine learning model.
From the extraction results, we found that several math-
ematical expressions are not associated with descriptions.
To compensate this lack-of-descriptions issue, we propose a
method based on dependency graph of mathematical expres-
sions.

A dependency graph G(V,E) of mathematical expressions
is a directed graph that is built by examining tokens of each
expression in a document. Each vertex in the graph rep-
resents a distinctive mathematical expressions found in a
document. If a distinctive mathematical expression appears
several times in a document, all of the extracted words in
context window and descriptions are merged into their re-
spective sets, namely the set of context window and the set
of descriptions. A directed edge from vertex mathexp 1 to
vertex mathexp 2 indicates that the mathematical expres-
sions mathexp 1 contains expression mathexp 2. In this
case, the vertices mathexp 1 and mathexp 2 are called par-
ent and child, respectively. Figure 3 shows an example of
dependency graph.

Having obtained a dependency graph, we can utilize the
textual descriptions from each child expression to help rep-
resent the target expression. As a result, we can associate
each mathematical expression not only with its own descrip-
tions, but also with the descriptions from each of its children.
Therefore, for each mathematical expression, we can store
these extended descriptions instead of its own descriptions
in the description_en field.

3.4 Reranking Retrieved Mathematical Ex-
pressions

The reranking system processes the math formula query
and the ranking list of the initially retrieved math formulae,
and then modify the ranking accordingly with new scores.
The general concept we chose to apply was to measure the
similarity between the query formula and each retrieved for-
mula belonging to the input set. By “similarity”, we mean
either syntactically identical to the query or close to the

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)

Bayes Theorem

𝑝 𝜃 𝑥
posterior 

probability

𝑝(𝜃)
prior 

probability

𝑝 𝑥 𝜃
likelihood 
function

𝑝(𝑥)
evidence

𝑥
observations

𝜃
parameters

Figure 3: An example of dependency graph of seven math-
ematical expressions. Each mathematical expression is ac-
companied by its corresponding description.

query in terms of mathematical meaning, with the several
equivalent notations in math formulae. Hence, we computed
a similarity measure which is the combination of the two as-
pects of a math expression: the structure and the content.
Our approach measures the content and the structure sim-
ilarities between the query and each result separately, and
then those two measures are combined to form the new score
which is then a similarity score. We defined the similarity
score between the query and a retrieved formula as follows:

formSim(fx, fq) = (contSim(fx, fq) · λ)

+ (structSim(fx, fq) · (1− λ))
(1)

where λ is the weighting parameter ranging from 0 to 1
applied to the content and the structure score, fq is the
query, and fx is a retrieved formula to be compared to the
query.

Both the content and the structure information are rep-
resented using the vector space model. A similarity vector
is then generated by computing the similarity between each
retrieved formula in the input dataset and the query using
Equation 1. The value of the weight λ is determined to be
0.3. It is essential that this weight stays under 0.5 because
we want the structure of a formula to be prominent over the
content. Eventually, the formulae are ranked in ascending
order of their similarity scores obtained.

(a) Structure of a math formula. The math expres-
sions written in MathML have tree-based structure
which is broken down into a collection of distinct paths.
These paths are used to measure the structural dis-
tance between expressions written in MathML. The
structure of a math formula, fi, is modeled as a vec-
tor (pi1; pi2; · · · ; piN ), where each element of the vec-
tor represents the frequency of a path that appears
in the formula and N being the total number of dif-
ferent paths among all the results and the query in-
cluded. We build a list of all the distinct paths encoun-
tered through the entire input dataset and the query.
A structure similarity matrix of the MathML files is
then generated. Eventually, the distance between the
query and each retrieved formula is computed using
Euclidean distance.

(b) Content of a math formula. With the use of the
org.w3c.dom package [17], we extract the content of
each MathML file and build a set of distinct terms. We
distinguish three types of contents using the MathML
markup and for which we considered to be of various
importance: operators, numeric literal, and identifiers.
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Hence, numeric literals and operators are subjects to
bear a strong importance in the content to be con-
sidered, whereas identifiers which can be expressed in
many ways would be weighted less. We included a few
exceptions such as defined functions names like sin or
cos, or symbolic constants such as π, which we placed
as exceptions to be considered equal level as the nu-
meric literal and operators. The content of a MathML
file is modeled as a vector, where each element of the
vector represents the frequency of a term which ap-
pears in the expression. Like in structure modeling, a
content similarity matrix is generated with the differ-
ent terms collected in all the files, including the query.

4. EXPERIMENTS

4.1 Experiment Setup
In the NTCIR-11 Math task, we submitted results from

four runs, as follows.

1. MCAT nodep-context is obtained by indexing both
mathematical expressions and their associated context
window.

2. MCAT dep-descriptions is obtained by indexing
both expressions and their associated descriptions.
This run utilizes dependency graph approach to com-
pensate for the any lack of extracted descriptions.
Once a dependency graph of mathematical expressions
is built for each document, we use the textual descrip-
tions from each child expression to help represent the
target expression.

3. MCAT all is obtained by indexing expressions
and both their associated context window (from
MCAT nodep-context) and descriptions (from
MCAT dep-descriptions).

4. MCAT dep-rerank is obtained by applying post-
retrieval reranking method to the result of MCAT dep-
descriptions run.

The ranking results from these runs are evaluated using
three metrics, namely precision-at-5 (P@5), precision-at-10
(P@10), and mean average precision (MAP). The evaluation
results allow us to investigate the effectiveness of descrip-
tions compared to the context window in a mathematical
search system. Furthermore, in one of the runs, we examine
the impact of applying a post-retrieval reranking method, by
weighting the original scores by the reranking scores. The
found expressions are grouped by the containing paragraph.
Scores for paragraphs are generated by adding together the
scores of all expressions found in them.

4.2 Experimental Result
The results of the four submitted runs are shown in Ta-

ble 3. This table shows that utilizing descriptions and de-
pendency graph together (MCAT dep-descriptions) delivers
better results than utilizing context window (MCAT nodep-
context). When only highly relevant expressions are ac-
cepted, the MCAT dep-descriptions run gives higher P@5,
P@10, and MAP by 17.07%, 20.83%, and 25.83%, respec-
tively, relative to the MCAT nodep-context run. In the
partial relevancy setting, the MCAT dep-descriptions run

Table 3: Summary of the results in the four submitted
runs. The values within parentheses represent the p-value of
the corresponding metrics. The p-values from MCAT dep-
descriptions and MCAT all runs are relative to the
MCAT nodep-context run; the p-value from MCAT dep-
rerank run is relative to the MCAT dep-descriptions run.
Run Name P@5 P@10 MAP

High Relevancy
MCAT nodep-
context

.1640 .0960 .0515

MCAT dep-
descriptions

.1920 .1160 .0648
(3.2× 10−2) (4.1× 10−3) (1.4× 10−2)

MCAT all
.2120 .1240 .0718

(1.8× 10−4) (5.6× 10−4) (1.1× 10−3)
MCAT dep-
rerank

.2080 .1300 .0742
(1.4× 10−1) (3.2× 10−2) (6.5× 10−3)

Partial Relevancy
MCAT nodep-
context

.4040 .2400 .0776

MCAT dep-
descriptions

.4160 .2600 .0860
(2.3× 10−1) (2.2× 10−2) (4.6× 10−2)

MCAT all
.4480 .2800 .0926

(5.8× 10−3) (1.5× 10−4) (3.0× 10−3)
MCAT dep-
rerank

.4640 .2800 .0933
(1.7× 10−2) (4.5× 10−2) (4.7× 10−2)

yields a lower accuracy gain, that is by 2.97%, 8.33%, and
10.82%. The experimental results also indicate that utiliz-
ing both types of textual information (MCAT all) gives even
better results. This MCAT all run outperforms not only
the MCAT nodep-context, but MCAT dep-descriptions as
well. Relative to the performance of MCAT nodep-context,
MCAT all delivers higher P@5, P@10, and MAP by 29.27%,
29.17% and 39.42%, respectively, in the high relevancy set-
ting and by 10.89%, 16.67% and 19.33% in the partial rel-
evancy setting. In addition, the performance improvements
obtained by MCAT dep-descriptions and MCAT all are also
statistically significant, except for the P@5 improvement
gained by MCAT dep-descriptions run in partial relevancy
setting.

In addition, we also gained some improvement from using
a reranking method. When comparing the results with the
use of reranking (MCAT dep-rerank) and the use of descrip-
tions and dependency graph without reranking (MCAT dep-
descriptions), we observe that when using the reranking
method, the P@5, P@10, and MAP values are superior by
8.3%, 12.1% and 14.5% respectively in high relevancy. Im-
provement can also be observed for partial relevancy, with
11.5% , 7.7% and 8.5% of increase in the scores. Overall,
the use of the reranking method maximized the scores ob-
tained, with an increase of 26.8%, 35.4% and 44.1% in the
P@5, P@10, and MAP scores respectively, in comparison to
the MCAT nodep-context run.

For an example where a dependency graph improved the
search result, let us consider the query MATH-2, which
consists of a query formula x2 − x − 1 = 0 and two
keywords: “golden ratio” and “Fibonacci”. From the rel-
evancy assessment, we found that two mathematical ex-
pressions, i.e. αk = αk−1 + αk−2 + αk−3 and uij =∑j

k=1−1i−k
(
i−1
k−1

)(
n−i
j−k

)
a2k−i−1, are relevant to the query

MATH-2. Thus, given the query MATH-2, we would want
these two expressions ranked high. However, these expres-
sions, especially uij =

∑j
k=1−1i−k

(
i−1
k−1

)(
n−i
j−k

)
a2k−i−1, do

not resemble the query formula much. Furthermore, there
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is no descriptions associated with them; thus there is no
match between terms from descriptions and from query text.
Therefore, it is difficult for these two expressions to have
high rankings.

The use of dependency graphs enables these two expres-
sions to have higher rankings than when no dependency
graph is used. The dependency graphs for these mathe-
matical expressions are displayed in Figure 4. When we use
dependency graphs, we can expand the textual description of
expression αk = αk−1 +αk−2 +αk−3 to contain the descrip-
tions of α, which are “the golden ratio” and “the roots of the
quadratic x2−x− 1 = 0 characterizing Fibonacci sequences
(is the golden ratio)· · · ”. In addition, we can also expand

the description of uij =
∑j

k=1−1i−k
(
i−1
k−1

)(
n−i
j−k

)
a2k−i−1 to

contain the descriptions of a, which are “the golden ratio”
and “a root”, and of n, which is “the upper parameter”. As
a result, several terms from the descriptions are a match for
the terms from the query text. For αk = αk−1+αk−2+αk−3,
the terms “golden”, “ratio”, and “Fibonacci” match with
the query text. For uij =

∑j
k=1−1i−k

(
i−1
k−1

)(
n−i
j−k

)
a2k−i−1,

the terms “golden” and “ratio” match with the query text.
Therefore, we can now expect these two expressions to have
higher rankings than when no dependency graph is used.
As a matter of fact, our submission MCAT dep-descriptions
reported that these two expressions are ranked 2nd and 5th,
respectively.

4.3 Discussion
The experiment results show that the performance of our

system seems weaker than at NTCIR-10. We suggest that
this happens because the task specification and the selec-
tion of topics have changed significantly between NTCIR-
10 and NTCIR-11. In NTCIR-10, we used the flexibility
of our system to our advantage, that is we could find rel-
evant sub-formulae where exact-match systems might not
have. Moreover, allowing anything to match query vari-
ables did not penalize our system too much. However, in
NTCIR-11, query variables get much bigger emphasis, most
topics feature complete and very particular formulae, and
sub-formulae matching is not nearly as useful as before.

Regarding the indexing time, our indexing process is done
in several steps:

• Encoding formulae and formatting them and de-
scriptions into XML fit for Solr import: around 40
processor-hours, which most of the time being spent
in XML processing and I/O.

• Importing the data into Solr: around 8 hours.

In addition, the size of Solr core on our disk is 58Gb. On
average, Tomcat that carries Solr is only at 300Mb vir-
tual RAM use, and under 3Mb of real RAM. Futhermore,
our process takes no significant RAM, since search is com-
pletely delegated to Solr (except for the transformation of
the MathML DOM to our indexing schema, which uses neg-
ligible time and space for a single query). The query is an
“or” query, which presumably requires Solr to use signifi-
cant space and time; and the number of disjunctive terms
increases directly with the number of nodes in the query
tree.

Table 4 shows the total answering time from each sub-
mission and the average answering time per query. The re-
sults suggest that there is no significant differences of the

average answering time per query among MCAT nodep-
context, MCAT dep-descriptions, and MCAT all subsmis-
sion. On the other hand, MCAT dep-rerank submission re-
quires much higher average answering time than the other
three submissions. This happens due to the additional
reranking process, which is applied after the regular retrieval
process. For further details, Table 5 shows the average an-
swering time of our system for each query.

Table 4: Answering time from each submission
Submission Total Ans.

Time (ms)
Avg Ans.
Time per
Query (ms)

MCAT nodep-context 2,466,405 49,328
MCAT dep-descriptions 2,420,947 48,419
MCAT all 2,400,350 48,007
MCAT dep-rerank 3,764,686 75,294

Table 5: Average answering time for each query over four
submissions

Query Ans. Time
(ms)

Query Ans. Time
(ms)

MATH-1 46,228 MATH-26 92,751
MATH-2 50,102 MATH-27 75,350
MATH-3 31,150 MATH-28 11,545
MATH-4 33,119 MATH-29 74,737
MATH-5 135,237 MATH-30 11,820
MATH-6 53,463 MATH-31 44,126
MATH-7 11,414 MATH-32 7,847
MATH-8 30,851 MATH-33 41,204
MATH-9 74,629 MATH-34 51,734

MATH-10 61,109 MATH-35 36,862
MATH-11 71,594 MATH-36 83,757
MATH-12 15,589 MATH-37 21,945
MATH-13 19,620 MATH-38 32,854
MATH-14 37,804 MATH-39 11,902
MATH-15 18,785 MATH-40 49,461
MATH-16 32,330 MATH-41 49,999
MATH-17 44,152 MATH-42 32,078
MATH-18 14,520 MATH-43 47,382
MATH-19 42,116 MATH-44 36,570
MATH-20 35,914 MATH-45 33,314
MATH-21 82,508 MATH-46 295,836
MATH-22 18,004 MATH-47 95,970
MATH-23 9,514 MATH-48 173,235
MATH-24 41,364 MATH-49 160,937
MATH-25 119,890 MATH-50 58,879

Overall 55,262

5. CONCLUSION
We have presented the participation of our MCAT sys-

tem in the NTCIR-11 Math-2 Task. We introduced an en-
coding technique for capturing the structure and content of
the mathematical expressions and a modified TF/IDF score
for ranking the retrieved expressions. In addition, to cap-
ture the meaning of each mathematical expression in natural
language, we associated each expression with two types of
textual information, namely words in context window and
descriptions. Subsequently, dependency graph approach was
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𝛼𝑘 = 𝛼𝑘−1 + 𝛼𝑘−2 + 𝛼𝑘−3 

𝛼 
• the golden ratio 
• the roots of the quadratic 𝑥2 − 𝑥 − 1 = 0 

characterizing Fibonacci sequences (is the 
golden ratio) … 

𝑢𝑖𝑗 = −1𝑖−𝑘
𝑖 − 1

𝑘 − 1

𝑛 − 𝑖

𝑗 − 𝑘

𝑗

𝑘=1
𝑎2𝑘−𝑖−1 

𝑘 
𝑎  

• the golden ratio 
• a root 

𝑗 𝑛 
• the upper parameter 

Figure 4: Two examples of dependency graphs that enrich the descriptions of target mathematical expressions. The left
dependency graph enriches the descriptions of αk = αk−1+αk−2+αk−3. The right dependency graph enriches the descriptions
of uij =

∑j
k=1−1i−k

(
i−1
k−1

)(
n−i
j−k

)
a2k−i−1

utilized to tackle the encountered lack-of-descriptions issue.
Moreover, we proposed a reranking method which is applied
to the initially retrieved expressions. The experimental re-
sults showed that the use of descriptions and dependency
graph together gave higher ranking performances than the
use of context window. Furthermore, it is also shown that
the use of descriptions and dependency graph together with
the context window delivered even better results. The re-
sults also indicated that the reranking method effectively
improved the ranking performances.

One of the future works is to set proper wights for context
window and descriptions. We also consider to associate each
mathematical expression with other types of textual infor-
mation obtained in the same document as the expression,
such as document title and keywords found in the abstract.
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