Overview of the NTCIR-11 MobileClick Task

Makoto P. Kato (Kyoto University), Matthew Ekstrand-Abueg, Virgil Pavlu, (Northeastern University) Tetsuya Sakai (Waseda University), Takehiro Yamamoto (Kyoto University), Mayu Iwata (KDDI Corporation)

Task: Return a concise summary, Satisfy information need of mobile users

LCD TV vs OLED TV comparison. LCD displays used in TVs, computer monitors, phone and tablets use a backlight overlaid with a laver of liquid crystals. An **Organic LED**

Query OLED LCD difference Generate a list of *iUnits* ranked according to iUnit Retrieval Subtask their importance for a given query iUnit Score 5 LCD is lighter than OLED iUnits OLED shows a better black color . . . For a given query and a list of *iUnits*, iUnit Summarization Subtask generate a <u>two-layered</u> textual output

Subtasks

Task: Given a search query,

Two-layered Summary

Task Flowchart:

Assessors can report which parts within the output match each GiUnit by text highlighting with a mouse

Evaluation of iUnit Summarization

M-measure = the expected utility of users who probabilistically click on links

Rare snow gum tr

 $M = \sum P(tt)U(tt)$ T: all possible trailtexts (text read by users) U: expected utility of a trailtext P: probability of users' reading a trailtext

Expected utility = U-measure

Idea: "More important GiUnits earlier" is better

- pos: position in text $U = \sum g(pos)D(pos)$ • g(pos): importance of GiUnit at pos D(pos): decay function = how much effort is required to reach pos
 - L: patience parameter (e.g. 280)

Consider possible reading paths for a two-layered summary, estimate their probability and evaluate their utility

System Output

1st layer

Some info.

<u>ink 1</u>

 $P(I_1) = 0.5$

 $P(l_2) = 0.2$

Estimated by voting

2nd layer

Some info.

Some info.

Trailtext1 Trailtext2

Trailtext3 $U(tt_3)$ pos=90 =g(90)D(90)

 $P(t_3) = 0.1$

+g(120)D(120)=1*(1-90/280)+2*(1-120/280)=1.8

 $=P(I_1)P(I_2)=0.1$ P(tt) = P(clicks resulting in the trailtext)

 $M = P(tt_1)U(tt_1) + P(tt_2)U(tt_2) + P(tt_3)U(tt_3) = 0.1 \times 0.5 + 0.4 \times 2.3 + 0.1 \times 1.8$

Evaluation Results:

Organization/Method Team name

KPNM	Hunan University of Science and Technology, China
	[Retrieval] Chain simple techniques based on statistical models and heuristic rules to extract significant text units
IISR	National Central University, Taiwan
	[Retrieval] Classify each query into eight query types and set the weights of the extraction methods accordingly
udel	University of Delaware, USA
	[Summarization] Simple re-ranking approach based on the cosine similarity between each iUnit and a dynamic "model" pseudo-document
NTOUA	National Taiwan Ocean University, Taiwan
	[Summarization] Grouping by longest leading substring.

