Overview of the NTCIR-11 Recognizing Inference in TExt and Validation (RITE-VAL) Task

Suguru Matsuyoshi	Yusuke Miyao	Tomohide Shibata	Chuan-Jie Lin	Cheng-Wei Shih	Yotaro Watanabe	Teruko Mitamura
University of	National Institute of	Kyoto University,	National Taiwan Ocean	Academia Sinica,	NEC Corporation,	Carnegie Mellon
Yamanashi, Japan	Informatics, Japan	Japan	University, Taiwan	Taiwan	Japan	University, U.S.A.

Subtask	Language	Task Description	Acronym	Test Data Size	Submissions	Top Macro-F1	Top Accuracy	Top Team (Run Num.)	Active participating
Fact	Simplified Chinese	Multi-Classification	CS-FV	613	12	38.93	44.05	III&CYUT (05)	team:
Validation	Traditional Chinese	Multi-Classification	CT-FV	613	15	39.51	44.70	III&CYUT (02)	22 toame
	Japanese	Binary Classification	JA-FV	514	30	61.93	63.23	NUL (03)	ZJICANS
		Passage Search		514	3				• 11 from Japan
	English	Binary Classification	EN-FV	188	9	53.17	55.85	BnO (01)	• / from laiwan
System	Simplified Chinese	Binary Classification	CS-SVBC	1,200	23	61.51	62.33	BUPTTeam (05)	 4 from Unina 1 from Monyov
Validation		Multi-Classification	CS-SVMC	1,200	18	44.39	51.83	WUST (01)	 1 from Viotnom
	Traditional Chinese	Binary Classification	CT-SVBC	1,200	17	56.24	56.25	III&CYUT (04)	(One team consists of
		Multi-Classification	CT-SVMC	1,200	17	40.54	43.33	III&CYUT (05)	people from Japan and
	Japanese	Binary Classification	JA-SV	1,379	26	69.59	77.81	NUL (04)	Vietnam.)
Total					170				

Fact Validation

Given Wikipedia, some textbooks and a sentence (t_2) , your system judges whether the document set entails t_2 or not.

Your system need searching for a text passage corresponding to t₁ in the given document set. And, based on the search result, the system must determine whether the document set entails t₂. If t₂ is entailed by some sentences in the document set, the statement described in t₂ can be judged as "fact."

System Given a text (t_1) and Validation a hypothesis (t_2) , your system judges whether t₁ entails t_2 or not.

The system is provided with the following two types of sentence pairs:

- Several linguistic phenomena are involved in the decision whether t₁ entails t₂. [JA-SV]
- A single linguistic phenomenon is involved in the decision whether t₁ entails t₂. [CS-SVBC, CS-SVMC, CT-SVBC, CT-SVMC]

A list of sentence pairs of the latter type is made from a usual sentence pair. While the RITE task aims at integrated semantic/context processing systems, it also has a problem that research focused on a specific linguistic phenomenon is not easy to pursue. This subtask provides a data set that includes a breakdown of linguistic phenomena that are necessary for recognizing relations between t_1 and t_2 .

Linguistic Phenomenon	Train	Test
abbreviation	6	25
apposition	7	25
case alternation	21	27
clause	25	59
coreference	11	24
hypernymy	30	27
inference	75	184
lexical entailment	12	29
list	20	37
meronymy	4	23
modifier	37	131
paraphrase	47	49
quantity	11	29
relative clause	6	36
scrambling	27	35
spatial	18	42
synonymy: lex	48	51
temporal	11	40
transparent head	13	26
antonym	20	35
exclusion: common sense	8	34
exclusion: modality	12	38
exclusion: modifier	14	33
exclusion: predicate argument	51	38
exclusion: quantity	6	29
exclusion: spatial	14	32
exclusion: temporal	7	34
negation	20	28
Total	581	1,200

FORMAL RUN RESULTS

Overview of the participating systems from the aspect of "run" ullet

Approach	CS	CT	JA	EN	Total	
Rule-based	0	3	6	1	10 (6%)	
Statistical	13	18	42	0	73 (47%)	
Hybrid	33	28	5	8	74 (47%)	

Statistical approaches:

SVM, Naïve Bayes, Threshold model, Penalized frequency distribution, Algebraic inference engine, Random forests, etc.

Feature / Information	CS	CT	JA	EN	Total	
alignment	6	15	17	0	38	
char/word overlapping	45	48	51	8	152	Figures in red in the
entailment rule	21	18	5	7	51	table indicate the
entity/event	7	17	1	0	25	of the number of the
hypernym	22	35	26	9	92	submitted runs for
meronym	8	16	3	2	29	each language.
modality	0	2	4	0	6	D
named entity	24	27	35	9	95	Resources: WordNet, Wikipedia,
overlapping	45	46	34	9	134	TongYiCiCiLin,
polarity	11	13	2	7	33	Hownet, Goi-Taikei, FrameNet VerbNet
predicate argument relationship	16	15	8	9	48	EDR dictionary, etc.
synonym/antonym	41	44	33	9	127	
syntactic information	25	17	14	9	65	
temporal/numeric information	43	47	27	7	124	
transformation	9	27	3	2	41	
(number of the submitted runs)	53	49	59	9	170	

SVMC label	Train	Test
Bidirectional entailment	222	300
Forward entailment	148	300
Contradiction	152	300
Independence	59	300
Total	581	1,200

CONCLUDING REMARKS AND FUTURE WORK

- Recognizing textual entailment in any of the four languages is still a difficult task for computers.
- System Validation subtask helps researchers to be aware of weakness of their system. We need further investigations of insufficient language resources and related linguistic phenomena in addition to continued construction of training data.
- We would like to work in cooperation with Todai Robot Project and Project Next NLP.

RITE-VAL Website: https://sites.google.com/site/ntcir11riteval/home