
NUL System at NTCIR RITE-VAL tasks

Ai Ishii
Nihon Unisys, Ltd.

ai.ishi@unisys.co.jp

Hiroshi Miyashita
Nihon Unisys, Ltd.

hiroshi.miyashita@unisys.co.jp
Mio Kobayashi
Nihon Unisys, Ltd.

mio.kobayashi@unisys.co.jp

Chikara Hoshino
Nihon Uniisys, Ltd.

chikara.hoshino@unisys.co.jp

ABSTRACT
This paper describes the submitted strategy and the meth-
ods of NUL team on NTCIR-11 RITE-VAL[1] fact valida-
tion (FV) and system validation (SV) tasks. We started
to follow the shallow approach by Tian et al[3]. Then, we
improved the named entity recognition accuracy and trans-
formed some variables by the cross validation score of train-
ing sets. Especially, in the FV tasks, we used Apache Solr as
the base search system. We compared several units of chunk
to the texts index and the weighting of the ranking score for
search results. After several modification, we achieved the
highest cross validation score to the RITE-10 Exam bc and
Exam Search tasks. Our final submitted system achieved
Macro-f1 score 61.93 in FV and 69.59 in SV respectively.

Team Name
NUL

Subtasks
Fact Validation and System Validation (Japanese)

Keywords
named entity recognition, search results ranking, machine
learning, logical reasoning

1. INTRODUCTION
Recognizing Textual Entailment (RTE) is the task of de-

termining whether ”hypothesis sentence”can be inferred from
”text sentence”. This task is one of the recent challenge of
Natural Language Processing (NLP), and one of the essen-
tial function to solve Question Answering (QA), Informa-
tion Retrieval (IR), Information Extraction (IE), Summa-
rizing (SUM), and so on. We examined some papers as-
sociated with RTE and investigated the entailment exam-
ples in RITE-2. The consequence of that, we found one of
the most important key factor to solve RTE task is to map
words between sentences (”hypothesis sentence” and ”text
sentence”). Thus, in this task we focused on words mapping
between sentences, made features (numerical value vector)
to determine entailment from that mapping and solved the
task by using the technique of machine learning. Besides,
we used existing tools (Cabocha1, KNP2 , NormalizeNu-

1https://code.google.com/p/cabocha/
2http://nlp.ist.i.kyoto-u.ac.jp/index.php?KNP

mexp3, Wikipedia Hyponymy extraction tool4, Solr5) and
data (Wikipedia, Wikipedia redirect6, WordnetJP7, Nihon-
goGoiTaikei8) to map words between sentences.

2. SHALLOW APPROACH
In this section, we describe our shallow approach for the

SV task.

2.1 System Architecture
Figure 1 shows our textual entailment system architec-

ture. Our system is mainly consisted of three subsystems
(feature extraction, learning and judgment). In the feature
extraction, it takes a Japanese sentence pair (T/H) as input,
then make a feature vector for each sentence pair. In the
learning, it takes feature vectors and answer labels (Y/N) as
input, then adjust hypothesis formula’s parameters by Lo-
gistic Regression. In the judgment, it takes feature vectors
as input, then outputs inferred answer labels. Moreover, we
eliminate unwanted characters and normalize characters in
raw inputs (T/H pairs) to make subsequent process easy.

2.2 Features
We make following features from each T/H sentence pair.

2.2.1 Number Expression Correspondence
First, we use normalizedNumexp to extract number ex-

pressions from a sentence. Then we convert them into num-
ber or date range. Number Expression Correspondence fea-
ture is defined by following formula.

f1 =

{
1, When F1 = 1
0.1, Otherwise

F1 is defined by following formula.

F1 =
#(Corr NumEh,t)

#(NumEh)

Where #(Corr NumEh,t) is number of H’s Number expres-
sion which are corresponding to T’s Number expressions.
#(NumEh) is number of H’s Number expression. When

3http://www.cl.ecei.tohoku.ac.jp/~katsuma/
software/normalizeNumexp/
4http://alaginrc.nict.go.jp/hyponymy/
5http://lucene.apache.org/solr/
6https://code.google.com/p/wikipedia-redirect/
7http://nlpwww.nict.go.jp/wn-ja/
8http://www.iwanami.co.jp/hotnews/GoiTaikei/

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

249

Training Data

(T/H Pairs)

Answer label

Divide to word

Extract number

expression

Extract named

entity

Extract content

word

Get synonyms

and hypernyms

Get synonyms

and hypernyms

KNP

normalizeNumex

p

Wikipedia title/

Nihongo Goi-

Taikei

Wikipedia

hypernym-

hyponym pairs/

Japanese

WordNet

Compare named

entity(T/H)

Compare content

word(T/H)

Japanese

WordNet/

word2vec

Training Data

(T/H Pairs)

Feature vectors

(for training)

Answer labels

Compare number

expression(T/H)

Logistic

Regression

Hypothesis
Feature vectors

(for training)

Judge

(Y/N) Predicted labels

(Y/N)

Preprocess

Figure 1: System architecture

a H’s Number expression satisfies following condition, we
judge the Number expression to be correspond.

H ′s Number Expression ⊃ T ′s Number Expression

If Number expression doesn’t exist in H, we assign 1 to this
feature.

2.2.2 Named Entity Correspondence
First, we use KNP to divide a sentence into word chunks

(Basic Clause). We concatenate adjacent word chunks in
order, then search longest match string from Wikipedia ti-
tle and Nihongo goi taikei. If word chunks matches, we
identify them as Named Entity (NE). When concatenating
word chunks, we eliminated unwanted suffix. Next, we re-
trieve synonyms and hypernyms from Wikipedia Redirect
and Wikipedia hypernym dictionary. We made Wikipedia
hypernyms dictionary by Wikipedia Redirect tool before-
hand. Named Entity Correspondence feature is defined by
following formula.

f2 =

{
1, When F2 = 1
0.1, Otherwise

where F2 is defined by following formula.

F2 =
#(Corr NEh,t)

#(NEh)

In this formula, #(Corr NEh,t) is number of H’s Named
Entity which are corresponding to either T’s Named Entity.
#(NEh) is number of H’s Named Entity. If H’s Named
Entity satisfied following condition, we judge it to be corre-

spond.

(NEh ∪ (synonyms of NEh) ∪ (hypernyms of NEh))

∩ (NEt ∪ (synonyms of NEt)) ̸= ϕ

Where NEh is H’s Named Entity and NEt is T’s Named
Entity. Moreover, to solve orthographic variation, we cal-
culate Levenshtein Distance between strings, then if that
distance is under a threshold value, we treated these strings
are corresponding. If Named Entity doesn’t exist in H, we
assign 1 to this feature.

2.2.3 Content Word Correspondence Rate
We identify word chunks as a Content Word. Then elim-

inate stop words like ”する”, ”ある”, ”こと”, ”もの” . . . etc.
Then we retrieve synonyms and hypernyms from Wikipedia
Redirect, Wikipedia hypernym dictionary, Nihongo goi taikei
and Japanese WordNet. ContentWord Correspondence Rate
feature is defined by following formula.

f3 =
#(Corr CWh,t)

#(CWh)

In this formula, #(Corr CWh,t) is number of H’s Content
Word which are corresponding to T’s either Content Words.
#(CWh) is number of H’s Content Words. If a H’s Content
Word satisfied following conditions, we judge the Content
Word to be correspond.

(CWh ∪ (synonyms of CWh) ∪ (hypernyms of CWh)

∩ (CWt ∪ (synonyms of CWt))) ̸= ϕ

Where CWt is T’s Content Words. Moreover, to solve or-
thographic variation, we calculate Levenshtein Distance be-

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

250

tween strings, then if that distance is under a threshold
value, we treated these strings are corresponding.

2.2.4 Content Word First Character Correspondence
Rate

Content Word First Correspondence Rate feature is de-
fined by following formula.

f4 =
#(FC Corr CWh,t)−#(Corr CWh,t)

#(CWh)

In this formula, #(FC Corr CWh,t) is number of H’s first
character which is corresponding to either first character of
T’s Content Word. We compare first character of Content
Word and its synonyms in both sentences (T/H).

2.2.5 Word2vec Cosign Distance
Word2vec Cosign Distance feature is defined by following

formula.

f5 =

∑
CWh∈NMCWh,t

(max
CWt

(cos(v(CWh), v(CWt))))

#(CWh)

Where NMCWh,t is a set of H’s Content Word which is
not corresponding to T. v(w) is a numerical vector mapped
to word w. We use word2vec to map word and numerical
vector. cos(v1, v2) is a cosign similarity between vector v1
and v2. If a H’s Content Word is not registered in word2vec,
we assign 0 to v(CWh). Word2vec was trained by Wikipedia
content in advance.

2.2.6 Exclusive Word
First, we retrieve adjective’s attribute’s categories by search-

ing Japanese WordNet. When searching, we use SQL (Ap-
pendix A) to retrieve them. Second, we compare attribute’s
categories of Content Word in both sentences (T/H). Then,
if a H’s Content Word satisfies following condition, we judge
sentence H has an exclusive word against sentence T.

(∪
CWh∈NMCWh

AC(CWh)) ∪ (∪
CWt∈CWall

AC(CWt)) ̸= ϕ

Where CWall is a set of T’s Content Word and AC(CW)
is an attribute category set related to Content Word CW.
Exclusive Word feature is defined by following formula.

f6 =

{
1, When H has exclusive word
0.1, Otherwise

2.2.7 Non Match Content Word Rate
Non Match Content Word Rate feature is defined by fol-

lowing formula.

f7 =
#(NMCWh,t)

#(CWh)

Where #(NMCWh,t) is number of H’s Content Word which
doesn’t correspond any T’s Content Words.

2.2.8 Learning
We use following Hypothesis for Logistic Regression.

hθ(f) =
1

1 + e−z

where

z =

n∑
i=1

θifi (fi : feature value. f0 ≡ 1.)

In our system, if the Hypothesis returns 0.5 or over, we
predict that sentence T entails sentence H. We use following
cost function to adjust parameters (θ0, . . . , θ7).

Jθ =− 1

m
[

m∑
i=1

y(i) log hθ(f
(i)) + (1− y(i)) log(1− hθ(f

(i)))]

+
λ

2m

n∑
j=1

θ2j

Where m is number of training data and y(i) is answer label
of training data.

y(i) =

{
1, When answer label of i− th training data is Y
0, Otherwise

f (i) is the feature vector of i-th training data. λ is regular-
ization parameter. We assign 1 to the regularization param-
eter. We used“RITE2 JA dev bc.xml”and“RITE2 JA dev
exambc.xml” for training. These two files were distributed
for NTCIR-11 RITE-VAL dry run.

2.3 Search

2.3.1 Features of FV
This section describes features of FV. These features is

almost the same in respect of the system architecture shown
in section 2. The point that this approach differs from Shal-
low Approach is that there are few features and use Cabocha
instead of KNP as the base processing systems. We defined
features referred to shallow approach by Tian et al[3]. Fea-
tures are defined by:

1. Correspondence of named entity (include number ex-
pression). f1 = 1 if every named entity in H as a
synonym in T. Otherwise f1 = 0.1.

2. Content Word Correspondence Rate f2 = log(DH+1)
log(LH+1)

,

where LH is the length of the content words list of H
and DH is the number of words in H that have found
their synonyms in T.

3. Length of H. f3 = log(Lh + 1).

Three ideas appeared in the feature design are worth men-
tioning:

1. We can be pretty sure that all named entity being
included and the correspondence rate of content word
were important for the positivity of the examples, and
set up f1 and f2.

2. When H is long, it is difficult for f2 become high, so
we applied the number of words of H to f3.

3. About f2 and f3, because of the length of a sentence is
well applied to the log-normal distribution, so we take
logarithm.

2.3.2 Search Strategy
We used Apache Solr as the base search system in the FV

tasks. We created the search index of Wikipedia and text-
book data, respectively, and merged each search results by
Distributed Search of Solr. Moreover, we chose the highest-
scoring entry as T among search results. We evaluated the
following two measures, in order to decide the search strat-
egy.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

251

1. Unit of Search Index
We assumed that the entry is appropriate as T which
includes many search keywords and these keywords are
near each other. However, Solr doesn’t provide prox-
imity measure which ignore word order. Therefore,
for substitution of proximity search we chose the unit
of index appropriately. It is suggested that making a
search index by a paragraph unit is effective than a sec-
tion and a subsection unit by Kano[5]. Therefore, we
divide textbook into paragraphs by document struc-
ture, and Wikipedia into paragraphs by a newline.

2. Search Query
We assumed that it is important that almost all named
entity of H are included in T. Therefore we construct
the search query which weights named entity 5 times.

3. MACHINE LEARNING
In the shallow approach, we apply the classification model

with the extracted features as described above. We in-
vestigate the non-linearity of the classification functions by
Bayesian Neural Networks [2].

p(y|x,w) = g(x,w)y(1− g(x,w))1−y

g(x,w) =
1

1 + exp(−f(x,w))

f(x,w) =

J∑
j=1

aj tanh(

K∑
k=1

bjkxk + cj) + d

For the criterion of the validity of the several network archi-
tectures, we use WAIC and WBIC [4]. WAIC is the estimate
of the generalization error which is given by

p(w|xn, yn, β) ≡
∏n

i=1 p(yi|xi, w)βφ(w)∫ ∏n
i=1 p(yi|xi, w)βφ(w)dw

WAIC = Tn +
Vn

n

Tn = − 1

n

n∑
i=1

logE[p(yi|xi, w)]p(w|yn,xn,1)

Vn =
n∑

i=1

V [log p(yi|xi, w)]p(w|yn,xn,1),

where, E[f]p and V [f]p are expectation and variance of the
function f over the distribution p. Additionally, WBIC is
the estimate of the free energy which is given by

WBIC = −E[

n∑
i=1

log p(yi|xi, w)]p(w|yn,xn, 1
log n

).

We evaluate these values to the training data which merge
dev-bc, testlabel-bc, dev-exambc and testlabel-exambc data
by Markov chain Monte Carlo. The results are given by ta-
ble1. These results show that WBIC prefers the linear model
but WAIC prefers the 5-hidden units non-linear model. In
this submission (NUL-04), we chooseWAIC’s non-linear model
because of the known fact that WBIC is more conservative
than WAIC. The validation results indicate that the non-
linear model outperforms at accuracy but under perform at
Macro-F1. This results suggest that we should carefully de-
sign the target of the objective function in such a subtle
situation.

model WAIC WBIC Accuracy Macro F1
linear 0.4904 1079.7 77.67 68.87

5-hidden 0.4858 1111.4 77.81 68.73

Table 1: Model Comparison

4. DEEP APPROACH
In the deep approach, we refer to Inference-based Ap-

proach by Tian et al[2]. First, we convert dependency trees
by KNP(syntax analysis system) to logical formula with
some simple rule, and evaluate it. For this conversion, we
apply Neo-Davidsonian Event Semantics[6]. We solve this
logical formula with Prolog program. Each of the nodes
is converted to facts, and hypernym/hyponym relations are
converted to rules. We convert text T to facts and H to
goal. In Figure 2, on the dependency tree, an edge between
”イタリア”(Italy) and ”併合する”(annex) is labeled case ”ガ”
by KNP as tag ”格解析結果”. If there is one edge labeled ”
ガ”, this parent/child relation will be described as predicate
”SBJ” stands for subject; If there is other label, as ”ヲ” or ”
ニ”, this relation will be described as predicate ”OBJ”stands
for object; And if there is not labeled by KNP tag ”格解析結
果”, this relation will be described as predicate ”ATT”stands
for attribute.

Text:
イタリアは，リベリアを併合した。(Italy annexed Liberia.)
Syntax analysis:

イタリア リベリア

ガ ヲ

併合する

Logical Formula:
イタリア (x) ∧ リベリア (y) ∧ 併合する (z) ∧ SBJ(z, x) ∧
OBJ(z, y)

Figure 2: Conversion of dependency trees

For this conversion, main operations are following four:

(1) Remove function words
From parsing result by KNP, we remove function words
like auxiliary verb.

(2) Unite basic clauses
With Wikipedia, WordnetJP and parsing result by
KNP, we unite basic clauses divided excessively. (We
unite basic clauses with tag ”文節内”or ”Wikipedia エ
ントリ”. Moreover, we do longest suffix matching for
other basic clauses.)

(3) Integration of synonyms
We get the ID of each words in the dependency trees
from Wikipedia redirect and WordnetJP. If there are
two words with the same meaning, these words have
same ID. The words with the same ID would be de-
scribed as the same things. In addition, we describe
hypernym/hyponym relations. About this relations,
we consider if clause A is hypernym of clause B, B
is one of A. Therefore, we convert the relations to
rules like ”hypernym(X) :- hyponym(X)”. However, if
both ”A is hypernym of B” and ”B is hypernym of A”

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

252

are present, the rules would be cause an infinite loop.
Therefore we delete the one of them.

(4) Change predicates or structure of tree
As mentioned earlier, we describe parent/child relation
with some predicates. However, there are relationship
as passive or parallel relation. When we choice the
predicates from KNP tag ”格解析結果”, these relations
may be unable to be described. Therefore, we change
some predicates. If a parent node labeled by KNP
tag ”態:受動” and an edge to child node labeled case ”
ヲ”, this relation will be described as predicate ”SBJ”
instead of ”OBJ”, and labeled ”ガ” it will be described
as predicate ”OBJ”. When there is parallel relation, if
necessary, we add new edges on dependency tree.

However, this approach has a problem that text H include
many words not in text T. In such a case, our answer will
be always False. On formal SV run, as expected, Deep Ap-
proach answered to False on most of problems. Therefore
we rejected these answers.
For reference, result of UnitTest provided as training data

is shown at table2, table3. For the above reasons, ”dis-
agree” category has been solved well. In ”modifier” or ”list”
category, we achieved good results. ”phrase” expect ”dis-
agree:phrase” was not a good score. From the results, deep
approach will be possible to get a good result at specific
categories.

Category Frequency Accuracy
disagree:lex 5 100.00

disagree:modality 2 100.00
disagree:spatial 1 100.00
disagree:phrase 25 96.00

modifier 30 66.67
list 11 63.64

relative clause 10 40.00
synonymy:lex 10 40.00
scrambling 16 37.50

clause 29 34.48
apposition 3 33.33

case alternation 9 33.33
entailment:phrase 28 7.14
synonymy:phrase 45 4.44

coreference 12 0.00
entailment:lex 1 0.00
hypernymy:lex 6 0.00

hypernymy:phrase 3 0.00
implicit relation 10 0.00

inference 4 0.00
meronymy:lex 1 0.00
nominalization 2 0.00

quantity 1 0.00
spatial 4 0.00

temporal 2 0.00
transparent head 2 0.00

Total 272 33.46

Table 2: Result of UnitTest(Training data)

5. EXPERIMENTAL RESULTS

Y-F1 N-F1 Y-Prec. Y-Rec. N-Prec. N-Rec.
39.46 26.12 98.33 24.69 15.09 96.97

Table 3: Macro F1, Precision, Recall of
UnitTest(Training data)

Our highest submission score are shown at table4 and ta-
ble5.

id accuracy Marco F1 Y-F1 N-F1
NUL-JA-FV-03 63.23 61.93 54.89 68.97

Table 4: Best result of FV task

id accuracy Marco F1 Y-F1 N-F1
NUL-JA-SV-04 77.81 69.59 53.78 85.40

Table 5: Best result of SV task

6. DISCUSSION

6.1 Relevant Features
For the examination of the relevance of proposed features,

we performed replication study. As a result of that, we found
effective features are following (see section 2.2).

• f1 : “Number Expression Correspondence”

• f2 : “Named Entity Correspondence”

• f3 : “Content Word Correspondence Rate”

Therefore, we examined mean difference of Micro-F1 score
between Case0 and Case1-Case4. Each case is defined as
follow.

• Case 0 : Use all (1, f1, f2, . . . , f7) features.

• Case 1 : Use f1, f2 features

• Case 2 : Use f1, f3 features

• Case 3 : Use f2, f3 features

• Case 4 : Use f1, f2, f3 features

In this examination, we used“RITE2 JA dev bc.xml”,“RITE2
JA dev exambc.xml”and“RITE-VAL JA testlabel system-
val.xml” as data source, divide them into equal size training
set and test set randomly. Then, adjust hypothesis param-
eter by training set and calculate macro F1 by test set for
each cases. We repeat these operation 100 times, examined
mean difference between Case0 and others by t-test. We use
R version 3.1.0 to calculate p-value. Our examination result
is table 6.

In this result, p-values of Case1-3 are very small value,
it suggests that Case1-3’s mean of macro F1 aren’t same
as Case0. Moreover, Case1-3’s macro F1 mean are smaller
than Case0, it indicates Case1-4 lack some features. On the
other hand, p-value of Case4 is sufficiently large to decide
Case4’s mean of macro F1 is same as Case0. Hence, domi-
nant features of our system are f1, f2, f3

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

253

Case Mean of Macro F1 p-value
Case 0 0.726 −
Case 1 0.699 > 2.2× 10−16

Case 2 0.706 > 2.2× 10−16

Case 3 0.707 > 2.2× 10−16

Case 4 0.727 0.4021

Table 6: Feature Comparison

6.2 Search methods
We applied two search methods shown in section 2.3 to

FV subtasks datasets of dev and testlabel. Experimental
results of each methods are following:

1. Unit of Search Index
For both datasets of dev and testlabel, it is very effec-
tive that making a search index by a paragraph unit.
It illustrates that a paragraph is appropriate unit of
search index, and the proximity between search key-
words is valid for weighting.

2. Search Query
The search query which weights named entity 5 times
was effective for FV dev datasets, however, it was not
good for FV test datasets. It illustrates that if the
word groups of named entity is stable, the search query
will obtain good results to some extent.

7. CONCLUSIONS
In this paper, we described approach of NUL System at

NTCIR RITE-VAL tasks. On SV and FV tasks, our system
brought good results. In FV-JA task, our result was the best
though we searched for documents related to each H text
from textbooks without using retrieved documents. Con-
sidering the results, operations described above (especially
search strategy) contributed to the result on this search. In
SV-JA task, our result was also the best. To solve this RTE
task, we were able to obtain good results in simpler way. If
the quality of extracted Named Entity becomes good, it was
suggested that better results can be achieved.

8. REFERENCES
[1] S. Matsuyoshi, Y. Miyao, T. Shibata, C.-J. Lin, C.-W.

Shih, Y. Watanabe, and T. Mitamura. Overview of the
NTCIR-11 Recognizing Inference in TExt and
Validation (RITE-VAL) Task. In Proceedings of the
11th NTCIR Conference, 2014.

[2] R. M. Neal. Bayesian Learning for Neural Networks.
Springer-Verlag New York, 1996.

[3] T. M. Ran Tian, Yusuke Miyao and H. Komatsu. Bno
at ntcir-10 rite: A strong shallow approach and
inference-based textual entailment recognition system.
In Proceedings of NTCIR-10, 2013.

[4] S. Watanabe. Algebraic Geometry and statistical
Learning Theory. Cambridge university press, 2009.

[5] 狩野芳伸. 大学入試センター試験歴史問題の自動解答. In
人口知能学会誌, 2014.

[6] 稲田和明. 日本語文における論理式変換の実装と課題調査.
In Bachelor’s thesis, Tohoku University, Department of
Information and Intelligent Systems, 2013.

APPENDIX
A. SQL QUERY

We describe the concrete example of sql query for the f6
at the section 2.2.6.

select * from synset where synset not in (

select synset2 from ancestor

where synset1=’04916342-’)

and synset<>’04916342-n’

and synset in (

select synset2 from ancestor

where synset1 in (

select synset2 from synlink

where link=’attr’ and synset1 in (

select synset from synset

where pos=’a’ and synset in (

select synset from sense

where wordid in (

select wordid from word

where lemma=“Content Word”))

union

select synset2 from synlink

where link=’sim’ and synset1 in (

select synset from synset

where pos=’a’ and synset in (

select synset from sense

where wordid in (

select wordid from word

where lemma=“Content Word”)))))

union

select synset2 from synlink

where link=’attr’ and synset1 in (

select synset from synset

where pos=’a’ and synset in (

select synset from sense

where wordid in (

select wordid from word

where lemma=“Content Word”))

union

select synset2 from synlink

where link=’sim’ and synset1 in (

select synset from synset

where pos=’a’ and synset in (

select synset from sense

where wordid in (

select wordid from word

where lemma=“Content Word”))))))

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

254

