

NTCIR-11 Conference

NUL System at RITE-VAL tasks

Ai Ishii ,Hiroshi Miyashita, Mio Kobayashi, Chikara Hoshino Technology Research & Innovation Nihon Unisys, Ltd. 2014/12/10

- Text Mining
- Common Sense
- Feature words extraction twitter bot
- UnNatural Language Processing

aimed at high-precision semantic analysis joined RITE-VAL as bench mark

All Rights Reserved, Copyright © 2014 Nihon Unisys, Ltd.

- Introduction
- Shallow approach for RTE
- Search Strategy at FV
- Experimental Results & Discussion
- Future Efforts & Conclusion

- Textual entailment recognition (RTE) system for two Japanese subtasks:
 - System Validation (SV)
 - Fact Validation (FV)

• Simple, but robust approach

- Shallow apploach for RTE
 - linear classifier mainly based on
 - word overlap feature
 - named-entity feature
 - RITE-2's "A strong shallow system" of team BnO as base system
 - improved named entity extraction
 - transformed some variables
- Apache Solr for FV

Shallow approach for RTE

All Rights Reserved, Copyright © 2014 Nihon Unisys, Ltd.

System Architecture

Feature extraction, learning and classification

For a pair of text T and hypothesis H:

- 1. Chunking
- 2. Named entity extraction
- 3. Number expressions extraction
- 4. Synonym finding
- 5. Features calculation

- Chunking
 - divide T and H into word chunks

using

- KNP(for SV)
- Cabocha (mainly for FV)

word chunk is a independence word and subsequent attached word(KNP's basic clause)

- identify a word chunk as a Content Word

- eliminating some stop words
 - "する", "ある", "こと", "もの" : : : etc.

Feature Extraction - Named entity extraction UNISYS

- Named entity extraction
 - max-length matching from the left
 - for each word chunk in H
 - with concatenating word chunks
 - The knowledge of named entity:
 - Wikipedia titles

except

- Nihongo goi taikei 's common noun
- Some exclusion pattern from Wikipedia title list
- Nihongo goi taikei's proper nouns

Feature Extraction - Number expression extractions

- Number expression extraction
 - normalizedNumexp
 - extracting number expression
 - converting them into number or date range

with some hard cording

example:

- remove " \neg "(one) from number expression
 - » It is often used, as "one of XX" than as number

- Synonym finding For each word in H, find synonym in T
 - The knowledge of synonyms:
 - Wikipedia redirect, Japanese WordNet
 - Nihongo goi taikei
 - for orthographic variation
 - Wikipedia hypernym dictionary
 - by Hyponymy extraction tool
 - Levenshtein Distance
 - for orthographic variation
 - For each number expression in H
 - Numerical and temporal entailment recognition
 - number expression of H \supset T

- Features calculation features are defined by:
 - f1: Number expression correspondence
 - f1 = 1 if every number expression in H \supset T
 - Otherwise f1 = 0.1
 - f2: Named entity correspondence
 - f2 = 1 if every named entity in H as a synonym in T.
 - Otherwise f1 = 0.1
 - f3: Content word correspondence rate
 - $f3 = D_H / L_H$
 - L_H: number of words in H
 - D_H: number of words in H that have found their synonyms in T

Features calculation

features are defined by:

- Other features
 - f4: Content word first character correspondence rate
 - f5: Word2vec cosign distance
 - f6: Exclusive word
 - f7: Non match content word rate

Input

– Features and answer labels (Y/N)

- Learning by Logistic Regression
- Classification
 - -y = 0 or 1
 - Threshold classifier at 0.5

Search Strategy at FV

All Rights Reserved, Copyright © 2014 Nihon Unisys, Ltd.

Features are defined by:

- f1: Named entity correspondence
 - f1 = 1 if every named entity in H as a synonym in T.
 - Otherwise f1 = 0.1
 - Named entity includes number expression
- f2: Content word correspondence rate
 - $f2 = log(D_H + 1) / log(L_H + 1)$
 - L_H : number of words in H
 - D_H : number of words in H that have found their synonyms in T
- f3: Length of H - $f3 = \log(L_{H} + 1)$

- "Distributed Search" of Solr
 - Search across multiple indexes
 - Wikipedia index
 - textbook index
 - Merge each search results

Highest-scoring entry as T

- Unit of search index
 - Search keywords should be near each other regardless of the word order
 - chose paragraphs as unit of search
 - separate by a newline

- Search query
 - weight named entity 5 times

Experimental Results & Discussion

All Rights Reserved, Copyright © 2014 Nihon Unisys, Ltd.

• SV

id	accuracy	Macro F1	Y-F1	N-F1
NUL-JA-SV-04	77.81	69.59	53.78	85.40

• FV

id	accuracy	Macro F1	Y-F1	N-F1
NUL-JA-FV-03	63.23	61.93	54.89	68.97

As a result of replication study

- Effective features are follows:
 - f1: Number Expression Correspondence
 - f2: Named Entity Correspondence
 - f3: Content Word Correspondence Rate

- Unit of Search Index
 Paragraph was very effective
- Search Query
 - Weighting named entity 5 times was not good for test datasets

Deep approach

based on syntactic parsing and inference

- Keywords specialized in domain
 - Word to be a singleton is different by the domain

example:

- "稲作"(rice crop)
- "貿易"(trade)

- Effective features are follows:
 - Number Expression Correspondence
 - Named Entity Correspondence
 - Content Word Correspondence Rate
- Effective search unit is
 - paragraph by a new line

Users & Unisys

Ex-post Experimental Results of the search method UNISYS

Effective method as follows:

- Paragraph as unit of search index
- Default weighting of Solr or avoiding length norm
- Sentence as it is for search query

pattern	f1 CC		f2 CC		Macro F1	
pattern	dev	test	dev	test	dev	test
Base line	0.2510	0.2116	<u>0.5212</u>	0.1885	62.59	59.80 <mark>-</mark>
paragraph	<u>0.3279</u>	<u>0.2951</u>	0.4611	<u>0.2239</u>	<u>66.46</u>	<u>62.61</u>
paragraph + NE^5	0.3056	0.2711	0.2176	0.1920	<u>65.92</u>	61.93 <mark>.</mark>
paragraph - TF	0.3086	0.2871	0.4569	0.2060	65.59	61.64 <mark>.</mark>
paragraph - LN	<u>0.3117</u>	<u>0.2945</u>	<u>0.5408</u>	<u>0.2447</u>	65.12	<u>64.28</u>
paragraph + synonym dic	0.3005	0.2771	0.4480	0.2144	65.57	62.49

Base line: page unit index, default weighting, Sentence as it is for search query CC = correlation coefficient, NE = Named Entity, TF = Term Frequency, LN = Length Norm

- good variable
 - f1: all named entity has synonym
 - f2: correspondence rate of content word
 - f3: number of words of H

variabl	f1	f2	f3	Αссι	iracy	Mac	roF1
es		12	13	dev	test	dev	test
BnO (RITE-2)	1 or 0.1	f1 *log (D _H + 1)	f1 * log (L _H + 1)	64.13	61.87	63.93	61.83
Test-1	1 or 0.1	log (D _H + 1)	log (L _H + 1)	65.06	64.2	63.83	63.17
Test-2	1 or 0.1	log (D _H + 1) / log (L _H + 1)	log (L _H + 1)	65.52	64.59	65.02	64.28

• Default Weight

$$w_{t,d} = tf_{t,d} \cdot idf_t^2 \cdot boost_t \cdot norm_d$$
$$= frequency_{t,d}^{\frac{1}{2}} \cdot \left(1 + \log \frac{N}{df_t + 1}\right)^2 \cdot boost_t \cdot norm_d$$

• Length Norm

$$lengthNorm_{d} = \frac{1}{\sqrt{numTerms_{d}}}$$

Discussion for Synonym Finding

- Idea: matching of content words loosely
- It is effective, but remaining challenges are a lot

Туре	Good Example	Bad Example		
Wikipedia	UNESCO&国連			
Redirect &	増加&上昇	直接&間接		
WordNet JP	醍醐天皇&延喜			
Wikipedia	 ウジェーヌ・ドラクロワ⊂画家	衆議院⊂国会議員		
Hypernym		銀行⊂各国		
Dictionary	│著作権⊂知的財産権	搾取⊂企業		
	ユーゴスラビア&ユーゴズラ	アメリカ&アフリカ(dist:1)		
Levenshtein	ヴィア(dist:3)	ルイ15世&ルイ14世(dist:1)		
Distance	ゴードン内閣&ゴードン改造内			
	閣(dist:2)			

• RITE-2 Data Set

Team	Accuracy	Macro F1	Y-F1	N-F1
Highest of RITE-2	64.51	58.12	41.76	74.48
Our System	65.42	65.12	61.03	69.00

• RITE-VAL Data Set

Team	Accuracy	Macro F1	Y-F1	N-F1
Highest of the	57.20	56.57		—
other team				
Our System	64.59	64.28	60.34	67.38

Exclusion pattern from Wikipedia title list

• Exclusion pattern list by Sekiguchi removed some entry

-	, ,	•
一覧	^ファイル:	の旗\$
における	^日本の	行政区画\$
において	県\$	^¥d+\$
についての	市\$	^¥d+世紀\$
に関する	区\$	^¥d+年
の登場人物	町\$	^明治.+年
の歴史	村\$	^大正.+年
県立	郡\$	^昭和.+年
都立	州\$	^平成.+年
道立	出入口\$	^¥d+年代\$
府立	の大統領\$	^¥d+月¥d+日\$
市立	の首相\$	決議¥d+
区立	の国王\$	¥d+条
町立	形電車\$	^第¥d+
村立	系電車\$	第.+回
曖昧さ回避	- 駅\$	第.+期
^Help:	高等学校\$	第.+次
^Category:	中学校\$	道.+号.*線
^Template:	小学校\$	^オリンピック.+選手団\$
^Portal:	幼稚園\$	^全国高等学校野球選手権.+大
^プロジェクト:	方法\$	

Sekiguchi, Koji, Development of the Natural Language Processing Tools for the Information Retrieval [Project Paper], JAIST, 2014.