
Recognizing Textual Entailment using Lexical,
Syntactical, and Semantic Information

Yann-Huei Lee
Institue of Information Science,

Academic Sinica
128 Academia Road, Section2
NanKang, Taipei 115, Taiwan
+886-2-27883799 ext 1560
andycyrus@gmail.com

Shafqat Virk
Institue of Information Science,

Academic Sinica
128 Academia Road, Section2
NanKang, Taipei 115, Taiwan

+886-2-27883799 ext 2415
virk.shafqat@gmail.com

Lun-Wei Ku
Institue of Information Science,

Academic Sinica
128 Academia Road, Section2
NanKang, Taipei 115, Taiwan

+886-2-27883799 ext 1808
lwku@iis.sinica.edu.tw

ABSTRACT
This paper describes our system for participating in the system
validation subtask of NTCIR-11 RITE-VAL. We trained a SVM
model with LibSVM using features extracted from labeled
sentence pairs. Besides features based on lexical, syntactic and
semantic analysis, we introduce a novel approach of extracting
“concepts” from a sentence and generating features based on it.
Unlabeled testing sentence pairs’ features are extracted through
the same process, and the SVM model that we have trained
predicts their labels.

Keywords
RITE, Concept-Based system, Entailment Recognition

Team Name
ASNLP.

Subtasks
System Validation (Chinese-Simplified, Chinese-Tradition).

1. INTRODUCTION
RITE-VAL [1] is a generic benchmark task that addresses major
text understanding needs in various NLP/Information Access
research areas. It evaluates systems that detect entailment,
paraphrase, and contradiction in texts written in Japanese, English,
Simplified Chinese, or Traditional Chinese. Entailment is a classic
logic problem in artificial intelligence. In the RITE task it
becomes a natural language processing problem, where the
experimental materials are texts.

We participated in the system validation subtask in this year’s
RITE-VAL, which requires participants to develop systems that
could classify the entailment relation between a sentence pair
formed by a text (T) sentence and hypothesis (H) sentence. There
are two subtasks, including binary-classification (BC) and multi-
classification (MC). Given the pair of sentences (T, H), the BC
subtask is to determine whether T entails H, a label “Y” is given if
entailment exists, and “N” if not. The MC subtask is to determine
the entailment direction or contradiction. The labels used in BC
subtask are “Y” and “N”. The labels defined in MC subtask are
“F” (for forward entailment, which T entails H), “B” (for
bidirectional entailment, which T and H entails each other),
“C” (for contradiction), and “I” (for independence).

The rest of this paper is organized as follow. In Section 2, we
introduce the architecture of our entailment system. In section 3
we describe our system in detail, including preprocessing and
feature extractions. In section 4 we present the evaluation results
from the official formal run. In section 5 we summarize our
experiment.

2. SYSTEM ARCHITECTURE
The overall architecture of our entailment system is shown in
Figure 1. Our system contains a preprocessing model, a concept
extraction model, a feature extraction model and a SVM model.
The procedure is as follow:

1. The text (T) and hypothesis (H) is first put through a
preprocessing model including the following processes:

A. Traditional Chinese to simplified Chinese conversion.

B. Numerical transfer.

C. Generate segmentation, parse tree, dependency tree
through Stanford parser.

D. Segmentation and POS tagging by CKIP parser.

2. Parse tree of each sentence is then put through the concept
extraction model to extract concepts from each sentence.

3. Calculate features from each text and hypothesis pair to
generate a feature vector for each sentence pair.

4. Use LibSVM [8] to train a model with feature vectors
generated from training data sentence pairs.

5. Use LibSVM and the trained model to predict classification
of the formal data.

3. SYSTEM DESCRIPTION
In this section, we describe each component of our system,
including preprocessing, concept extraction, feature calculation,
and concept feature calculation.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

278

PREPROCESSING
In this subsection, we explain the preprocessing functions done
before each text and hypothesis pair is ready for feature extraction.
These preprocesses include: simplified Chinese transformation,
numeric format transformation, segmentation, parse tree
generation, dependency tree generation, and CKIP parsing.

3.1.1 Simplified Chinese Transformation
Our system rely on public tools like Stanford parser for Chinese
segmentation, parse tree generation, and dependency tree
generation. The Stanford parser has a better performance with
simplified Chinese. Therefore, we need to convert traditional
Chinese into simplified Chinese.

We convert traditional Chinese characters to their simplified
Chinese characters by a Java Chinese Convertor [2].

3.1.2 Numeric Format Transformation
Numbers in Chinese sentence could be represented in Chinese
numerals or Arabic numerals or a mix of both forms. Different
numeric formats would lead to different interpretation of the
sentence. In order to confront this issue, we capture certain strings
within a sentence, base on certain rules, and convert Chinese
numerals into Arabic numerals. Figure 2 shows an example of the
transformation.

3.1.3 Stanford Parser
After each sentence has been transformed to simplified Chinese
and unified numeral formats, each sentence is first segmented
through the Stanford Word Segmenter [3], which is a necessary
process for identifying words within a Chinese sentence.

The segmented sentence is then used by the Stanford parser [4] to
generate a context-free phrase structure grammar representation
(parse tree) and a typed-dependency representation (dependency

tree).

3.1.4 CKIP Parser
Besides Stanford parser, we also use the CKIP parser [5], a
system designed for Traditional Chinese, to get segmentation and
part-of-speech tag information.

3.2 CONCEPT EXTRACTION
We introduce a novel idea of decomposing natural language text
to smaller semantic expressions called “concepts”, which includes
continuous or dis-continuous parts of a sentence that makes some
semantic sense. [7]

To generate concepts from a sentence, we first need a structured
representation (i.e. a parse tree) using Stanford parser. This is
achieved in section 3.1.3.

Next, the resulting parse tree is semantically analyzed to identify
and label semantic arguments associated with the verbal predicate
of a sentence. For this purpose, we built a semantic role labeling
(SRL) system using Penn TreeBank and Propbank data. A novel
semantic role classification approach is used to incorporate
contextual information, while labeling the semantic arguments of
a predicate.

Figure 3 shows an example output of our concept extraction tool.
It shows the predicates and arguments extracted from the sentence.
Pairing up every argument with its semantic role and predicate,
we can form a “concept”.

Figure 3. Concept Extraction Example

Input Sentence:
《红楼梦》被评为中国古典章回小说的最高杰作，思想价

值和艺术价值极高。
("Dream of Red Chamber" was rated as the highest
masterpiece of Chinese classical novels; it’s highly valued in
ideological and artistic.)
Semantic Role Labeling:

Predicate Argument SRL

极高 思想价值和艺术价值 ARG0

评为
中国古典章回小说的最高杰作 ARG1

《红楼梦》 ARG0

Extracted Concepts:
极高 - 思想价值和艺术价值(ARG0)
评为 -《红楼梦》(ARG0)
评为 - 中国古典章回小说的最高杰作(ARG1)

Original: Top Gear 在全世界拥有多达 3 亿 5,000 万观众。
(Top Gear has more than 350,000,000 audiences in the world)

Transformed: Top Gear在全世界拥有多达 350000000观众 。

Figure 2. Numeric Format Transformation Example

Figure 1. System Architecture

Text &
 Hypothesis

Preprocessing
Model

Concept
Extraction Model

Feature
Extraction Model

LibSVM training
& prediction

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

279

3.3 FEATURE CALCULATION
In this subsection, we describe in detail the features that are used
to generate a feature vector for each text (T) and hypothesis (H)
pair, which would be used for training and prediction with
LibSVM. All features return a value between 0 to 1, which is done
by normalizing the result with certain measures of T or H. This
normalization process could also reflect the direction of
entailment, which is important in MC. All features are calculated
in aspects of T and H to reflect direction of entailment as well.

3.3.1 Exclusive Word
This feature calculates the amount of words in H that does not
exist in T. This amount is then normalized by the amount of
words within T or H.

3.3.2 Sentence Length Based Entailment
This feature return 1 if H has more words than T. Return 0
otherwise.
Another version is to return 1 if T has more words than H, return
0 otherwise.

3.3.3 N-Gram Overlap
This feature first calculates the amount of identical n-grams
within T and H on character level. Then normalize it with the
amount of possible n-grams that could contain T or H as the result
for this feature. We consider only bigrams and trigrams.

3.3.4 Word Overlap
This feature is identical to n-gram overlap, but we consider n-
grams at word level.

3.3.5 Matching Words
This feature first calculates the amount of identical words within
T and H. Then it is normalize it by the amount of words in T or
the amount of words in H.

3.3.6 LCS Similarity
This feature first calculates the length of the longest common
string (LCS) of T and H. Then it is normalized by the total length
of all possible substrings in T or in H.

3.3.7 Levenshtein Distance
Levenshtein distance, also know as edit distance, considers the
minimum amount of operations for one string to transform to
another. Here, we calculate the amount of operations needed to
transform from T to H at word level. Then it is normalized by the
total amount of words within T or H.

3.3.8 Common String Overlap
This feature first calculates the total length of all common
substrings in T and H. Then it is normalized by the length of T or
H .

3.3.9 Cosine Similarity
This feature first builds a word vector for T and H. Each
dimension of the vector represents the occurrence frequency of a
certain word within the sentence. We then calculate the cosine
similarity between the word vector of T and H.

3.3.10 Disconnected Dependencies
The dependency relation generated by Stanford parser is in the
format as follow:

Relation (Head - Head# , Modifier - Modifier#)

In this feature we first extract all nouns (words with POS tag of
“NN”, “NR”, “NT” labeled by Stanford parser) from T and H to
get NounListT and NounListH.

In the aspect of H, all nouns in NounListH have to exist in
NounListT for further calculation. Then we go through all
dependencies in H, which both Head and Modifier is in NounListH,
and calculate the amount of dependencies in T that has the same
relation but different Head and Modifier. This amount is then
normalized by the amount of dependency in T or H.
As for the aspect of T, all nouns in NounListT have to exist in
NounListH for further calculation. Then we go through all
dependencies in T, which its Head and Modifier is in NounListT,
and calculate the amount of dependencies in H that has the same
relation but different Head and Modifier. This amount is then
normalized by the amount of dependency in T or H.

A non-strict version of this feature is to neglect the criteria that all
nouns in NounListH have to exist in NounListT, or all nouns in
NounListT have to exist in NounListH.

3.3.11 Missing Arguments
In this feature we first extract all nouns (words with POS tag of
“NN”, “NR”, “NT” labeled by Stanford parser) from T and H to
get NounListT and NounListH.

In the aspect of H, we calculate the amount of nouns in NounListH
that is not in NounListT. This amount is normalized by the amount
of nouns in NounListT or in NounListH.

As for the aspect of T, we calculate the amount of nouns in
NounListT that is not in NounListH This amount is normalized by
the amount of nouns in NounListT or in NounListH.

3.3.12 Missing Relation
In this feature, we go through all dependencies in H and check if
there’s any dependency in T that has the same “relation”. If no
dependency of the same “relation” exists in T, we have a missing
relation. We calculate the amount of missing relations in H and
normalize it by the amount of dependencies in T or H.
In the aspect of T, we would go through all dependencies in T and
calculate the amount of missing relations, and then normalize it by
the amount of dependencies in T or H.

3.3.13 Connected Dependencies
In this feature we first extract all nouns (words with POS tag of
“NN”, “NR”, “NT” labeled by Stanford parser) from T and H to
get NounListT and NounListH.
In the aspect of H, all nouns in NounListH have to exist in
NounListT for further calculation. Then we go through all
dependencies in H, which its Head and Modifier is in NounListH,
and calculate the amount of identical dependencies in T. This
amount is then normalized by the amount of dependency in T or H.

As for the aspect of T, all nouns in NounListT have to exist in
NounListH for further calculation. Then we go through all
dependencies in T, which its Head and Modifier is in NounListT,
and calculate the amount of identical dependencies in H. This
amount is then normalized by the amount of dependency in T or H.

A non-strict version of this feature is to neglect the criteria that all
nouns in NounListH have to exist in NounListT, or all nouns in
NounListT have to exist in NounListH.

3.3.14 Independent Negative Dependency
In this feature, we return 1 when there exist a dependency in H
that satisfy,

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

280

1. The relation of the dependency is “neg”.

2. In the dependencies of T exists one that has the same Head
as the current dependency in H and its relation is not “neg”.

0 is returned if such case doesn’t exist.
Another version is considering from the aspect of T, which we
return 1 when there exist a dependency in T that satisfy,
1. The relation of the dependency is “neg”.

2. In the dependencies of H exists one that has the same Head
as the current dependency in T and its relation is not “neg”.

0 is returned if such case doesn’t exist.

3.3.15 Contradiction Dependency
In this feature, we return 1 when there exist a dependency in H
that satisfy,
1. The relation of the dependency is “neg”.

2. In the dependencies of T doesn’t exists one that has the same
Head as the current dependency in H and its relation is “neg”.

0 is returned if such case doesn’t exist.
Another version is considering from the aspect of T, which we
return 1 when there exist a dependency in T that satisfy,
1. The relation of the dependency is “neg”.

2. In the dependencies of H doesn’t exists one that has the same
Head as the current dependency in T and its relation is “neg”.

0 is returned if such case doesn’t exist.

3.3.16 CKIP POS tag
CKIP part-of-speech tags give more detail labeling in Chinese for
proper nouns, places, location, time, numbers, and amounts with 9
tags: “Nb”, “Nc”, “Ncd”, “Nd”, “Neu”, “Neqa”, “Neqb”, “Nf”,
“Ng”, “Nh”. If H doesn’t contain or have different content than T
under these labels, it is likely that T doesn’t entail H.

So we generate a feature value for each tag. Each feature checks if
T contains the tag in concern, -1 is returned when no words in T is
labeled with the tag. Extract all words that are labeled with the tag
in concern in T and H to get two word lists: WordListT, tag and
WordListM, tag. If WordListT, tag and WordListM, tag matches each
other in every element return 1, return 0 if else.

3.3.17 CILIN Synonyms
The features described above matches words base on exact match,
which would consider synonyms as different entities and lead to
misjudging when calculating features to determine entailment.

To encounter this issue, we applied a Chinese thesaurus
tong2yi4ci2ci2lin2 ("同義詞詞林") [6], which lists 65,464 words
in the format as shown in Figure 4.

Each word is given a unique code in the format as follow,

MainClass# . SubClass1# . SubClass2# .%

In Figure 3, we can see the first two words “加快” and “加速”
both means “speed up”, they have identical MainClass# and
SubClass1# but different SubClass2#. So is the following three
words “放慢”, “降速”, and “減速”, all means “slow down”.

So during certain feature calculations which involves matching
two words, beside exacting string match we also check and see if
both words can be found within this thesaurus and have the same
MainClass# and SubClass1#. If this criterion is satisfied, we
consider the two words to be identical as well. This is applied in
the following features mention previously to form a new feature
for calculation: Exclusive words, disconnected dependencies,
connected dependencies, and missing arguments.

3.4 CONCEPT FEATURE CALCULATION
In this subsection, we discuss about the features calculated from
concepts extracted from each T and H.

Considering concepts represent information extracted from each
sentence, T is likely to entail H if T has the same or more
information than H. And it’s likely that entailment doesn’t exist if
H contains information not included in T. The following features
tend to reflect this information in different aspects.

3.4.1 Concept Amount Difference
This feature calculates the difference of the amount of concepts in
H compared to T. This amount is then normalized by the amount
of concepts in T or H.
Another version is to calculate the difference of the amount of
concepts in T compared to H, and then normalize by the amount
of concepts in T or H.

3.4.2 Predicate Miss
Since concepts are based on predicates extracted from a sentence,
amount of difference in predicates would reflect the magnitude of
difference in two sentences.

In this feature, we calculate the amount of predicates in H that is
not in T, and normalize by the amount of predicates in H.
Another version is to calculate the amount of predicates in T that
is not in H, and normalize by the amount of predicates in T.

3.4.3 Argument Miss
Beside predicates, argument is also an important component of
concepts.

加快(speed up) Ih08.01.001.%
加速(speed up) Ih08.01.002.%
放慢(slow down) Ih08.02.001.%
降速(slow down) Ih08.02.002.%
減速(slow down) Ih08.02.003.%

…
推遲(delay) Ih07.02.001.%
延遲(delay) Ih07.02.002.%

Figure 4. Chinese thesaurus tong2yi4ci2ci2lin2
data example

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

281

So in this feature we look for the amount of arguments in H that is
not in the arguments of T under the same predicate. This amount
is then normalized by the total amount of arguments in H.

Another version is to calculate the amount of arguments in T that
is not in the arguments of H under the same predicate. This
amount is then normalized by the total amount of arguments in T.

3.4.4 Argument SRL Miss
Since each argument has been given a semantic role label, it is
likely that a pair of sentence has the same information, if the
argument from the same predicate with the same SRL is identical.

So in this feature we look for the amount of arguments in H that is
not in the arguments of T, under the same predicate and same
SRL. This amount is then normalized by the total amount of
arguments in H.

Another version is to calculate the amount of arguments in T that
is not in the arguments of H under the same predicate and same
SRL. This amount is then normalized by the total amount of
arguments in T.

3.4.5 SRL Miss Amount
Semantic role labels of “ARGM-LOC” and “ARGM-TMP” are
labels for location and time. It is likely that T entails H when the
location and time information in H is identical to the same
information in T.

So in this feature, we go through all concepts in H to see if we
could find arguments with SRL as “ARGM-LOC” or “ARGM-
TMP”, and if there exists an identical argument in T with the
same SRL. If such argument doesn’t exist in T, a SRL miss occur.
We calculate the amount of SRL miss and normalize it by the
amount of arguments in H with SRL as “ARGM-LOC” or
“ARGM-TMP”.

Another version would be going through concepts in T and
calculate the amount of SRL miss of H, then normalize it by the
amount of arguments in T with SRL as “ARGM-LOC” or
“ARGM-TMP”.

4. EVALUATION
The Training data for BC task are 1321 labeled sentence pairs in
Traditional Chinese from RITE2, and 581 labeled sentence pairs
each in Traditional and Simplified Chinese from RITE-VAL
training data. As for the MC task, we have 1321 labeled sentence
pairs in Traditional Chinese from RITE2, and 581 labeled
sentence pairs each in Traditional and Simplified Chinese from
RITE-VAL training data.

The test data for Traditional Chinese and Simplified Chinese in
BC and MC each have 1200 unlabeled sentence pairs.

Our system is developed with knowledge sources and tools that
handle Simplified Chinese, so when dealing with Traditional
Chinese sentence pairs in training and testing data, we convert
them into Simplified Chinese, as mentioned in 3.1.1, before
further processing.

We submitted one run for each task. The official evaluation
results are shown in Table 1~4.

Table 1. Evaluation result on binary-class (BC) classification
in Simplified Chinese (CS) data set

 Precision Recall F1

Y 50.89 86.00 63.94

N 54.84 17.00 25.95

Macro F1 44.95

Table 2. Evaluation result on binary-class (BC) classification
in Traditional Chinese (CT) data set

 Precision Recall F1

Y 50.84 86.17 63.95

N 54.64 16.67 25.54

Macro F1 44.74

Table 3. Evaluation result on multiple-class (MC)
classification in Simplified Chinese (CS) data set

 Precision Recall F1

F 50.75 68.00 58.12

B 35.03 71.00 46.92

C 33.71 19.67 24.84

I 53.33 2.67 5.08

Macro F1 33.74

Table 4. Evaluation result on multiple-class (MC)
classification in Traditional Chinese (CT) data set

 Precision Recall F1

F 50.62 68.00 58.04

B 35.35 72.00 47.42

C 33.92 19.33 24.63

I 53.33 2.67 5.08

Macro F1 33.79

5. CONCLUSION
In this paper, we described our system built for the system
validation subtask of NTCIR-11 RITE-VAL task. Our system first
preprocesses each sentence pair through a series of well-known
NLP analysis. We introduced a novel idea of extracting concepts
from a sentence. With the preprocessing analysis, we calculate a
feature vector for each sentence pair. The feature vectors of
labeled sentence pairs are then used for training a SVM model
with LibSVM. This model is then used to predict the labels of
feature vectors of unlabeled sentence pairs.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

282

6. REFERENCES
[1] Suguru Matsuyoshi and Yusuke Miyao and Tomohide

Shibata and Chuan-Jie Lin and Cheng-Wei Shih and Yotaro
Watanabe and Teruko Mitamura. Overview of the NTCIR-11
Recognizing Inference in TExt and Validation (RITE-VAL)
Task. Proceedings of the 11th NTCIR Conference, 2014

[2] Java Chinese Converter. https://code.google.com/p/jcc/
[2014/09/01]

[3] Stanford Word Segmenter.
http://nlp.stanford.edu/software/segmenter.shtml [2014/09/01]

[4] Stanford Parser. http://nlp.stanford.edu/software/lex-
parser.shtml [2014/09/01]

[5] CKIP Chinese word segmentation system.
http://ckipsvr.iis.sinica.edu.tw/ [2014/09/01]

[6] Mei, J., Zhu, Y. Gao, Y. and Yin, H.. (1982).
tong2yi4ci2ci2lin2. Shanghai Dictionary Press.

[7] Soujanya Poria, Nir Ofek, Alexander Gelbukh, Amir Hussain
and Lior RokachShafqat Mumtaz Virk, Yann-Huei Lee and
Lun-Wei Ku. Sentic Demo: A Hybrid Concept Level Aspect
Based Sentiment Analysis Toolkit. Proceedings of the 11th
ESWC, 2014.

[8] C.-C. Chang and C.-J. Lin. LIBSVM : a library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1--27:27, 2011.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

283

