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ABSTRACT 
This paper describes our system for participating in the system 
validation subtask of NTCIR-11 RITE-VAL. We trained a SVM 
model with LibSVM using features extracted from labeled 
sentence pairs. Besides features based on lexical, syntactic and 
semantic analysis, we introduce a novel approach of extracting 
“concepts” from a sentence and generating features based on it. 
Unlabeled testing sentence pairs’ features are extracted through 
the same process, and the SVM model that we have trained 
predicts their labels. 

Keywords 
RITE, Concept-Based system, Entailment Recognition 
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1. INTRODUCTION 
RITE-VAL [1] is a generic benchmark task that addresses major 
text understanding needs in various NLP/Information Access 
research areas. It evaluates systems that detect entailment, 
paraphrase, and contradiction in texts written in Japanese, English, 
Simplified Chinese, or Traditional Chinese. Entailment is a classic 
logic problem in artificial intelligence. In the RITE task it 
becomes a natural language processing problem, where the 
experimental materials are texts. 

We participated in the system validation subtask in this year’s 
RITE-VAL, which requires participants to develop systems that 
could classify the entailment relation between a sentence pair 
formed by a text (T) sentence and hypothesis (H) sentence. There 
are two subtasks, including binary-classification (BC) and multi-
classification (MC). Given the pair of sentences (T, H), the BC 
subtask is to determine whether T entails H, a label “Y” is given if 
entailment exists, and “N” if not. The MC subtask is to determine 
the entailment direction or contradiction. The labels used in BC 
subtask are “Y” and “N”. The labels defined in MC subtask are 
“F” (for forward entailment, which T entails H), “B” (for 
bidirectional entailment, which T and H entails each other), 
“C” (for contradiction), and “I” (for independence). 

The rest of this paper is organized as follow. In Section 2, we 
introduce the architecture of our entailment system. In section 3 
we describe our system in detail, including preprocessing and 
feature extractions. In section 4 we present the evaluation results 
from the official formal run. In section 5 we summarize our 
experiment. 

2. SYSTEM ARCHITECTURE 
The overall architecture of our entailment system is shown in 
Figure 1. Our system contains a preprocessing model, a concept 
extraction model, a feature extraction model and a SVM model. 
The procedure is as follow: 

1. The text (T) and hypothesis (H) is first put through a 
preprocessing model including the following processes: 

A. Traditional Chinese to simplified Chinese conversion. 

B. Numerical transfer. 

C. Generate segmentation, parse tree, dependency tree 
through Stanford parser. 

D. Segmentation and POS tagging by CKIP parser. 

2. Parse tree of each sentence is then put through the concept 
extraction model to extract concepts from each sentence. 

3. Calculate features from each text and hypothesis pair to 
generate a feature vector for each sentence pair. 

4. Use LibSVM [8] to train a model with feature vectors 
generated from training data sentence pairs. 

5. Use LibSVM and the trained model to predict classification 
of the formal data. 

3. SYSTEM DESCRIPTION 
In this section, we describe each component of our system, 
including preprocessing, concept extraction, feature calculation, 
and concept feature calculation. 
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PREPROCESSING 
In this subsection, we explain the preprocessing functions done 
before each text and hypothesis pair is ready for feature extraction. 
These preprocesses include: simplified Chinese transformation, 
numeric format transformation, segmentation, parse tree 
generation, dependency tree generation, and CKIP parsing. 

3.1.1 Simplified Chinese Transformation 
Our system rely on public tools like Stanford parser for Chinese 
segmentation, parse tree generation, and dependency tree 
generation. The Stanford parser has a better performance with 
simplified Chinese. Therefore, we need to convert traditional 
Chinese into simplified Chinese. 

We convert traditional Chinese characters to their simplified 
Chinese characters by a Java Chinese Convertor [2]. 

3.1.2 Numeric Format Transformation 
Numbers in Chinese sentence could be represented in Chinese 
numerals or Arabic numerals or a mix of both forms. Different 
numeric formats would lead to different interpretation of the 
sentence. In order to confront this issue, we capture certain strings 
within a sentence, base on certain rules, and convert Chinese 
numerals into Arabic numerals. Figure 2 shows an example of the 
transformation.  

 

3.1.3 Stanford Parser 
After each sentence has been transformed to simplified Chinese 
and unified numeral formats, each sentence is first segmented 
through the Stanford Word Segmenter [3], which is a necessary 
process for identifying words within a Chinese sentence. 

The segmented sentence is then used by the Stanford parser [4] to 
generate a context-free phrase structure grammar representation 
(parse tree) and a typed-dependency representation (dependency 

tree). 

3.1.4 CKIP Parser 
Besides Stanford parser, we also use the CKIP parser [5], a 
system designed for Traditional Chinese, to get segmentation and 
part-of-speech tag information. 

3.2 CONCEPT EXTRACTION 
We introduce a novel idea of decomposing natural language text 
to smaller semantic expressions called “concepts”, which includes 
continuous or dis-continuous parts of a sentence that makes some 
semantic sense. [7] 

To generate concepts from a sentence, we first need a structured 
representation (i.e. a parse tree) using Stanford parser. This is 
achieved in section 3.1.3. 

Next, the resulting parse tree is semantically analyzed to identify 
and label semantic arguments associated with the verbal predicate 
of a sentence. For this purpose, we built a semantic role labeling 
(SRL) system using Penn TreeBank and Propbank data. A novel 
semantic role classification approach is used to incorporate 
contextual information, while labeling the semantic arguments of 
a predicate.  

Figure 3 shows an example output of our concept extraction tool. 
It shows the predicates and arguments extracted from the sentence. 
Pairing up every argument with its semantic role and predicate, 
we can form a “concept”. 

 

 

Figure 3. Concept Extraction Example 

Input Sentence:  
《红楼梦》被评为中国古典章回小说的最高杰作，思想价

值和艺术价值极高。 
("Dream of Red Chamber" was rated as the highest 
masterpiece of Chinese classical novels; it’s highly valued in 
ideological and artistic.) 
Semantic Role Labeling: 

Predicate Argument SRL 

极高 思想价值和艺术价值 ARG0 

评为 
中国古典章回小说的最高杰作 ARG1 

《红楼梦》 ARG0 

Extracted Concepts: 
极高 - 思想价值和艺术价值(ARG0) 
评为 -《红楼梦》(ARG0) 
评为 - 中国古典章回小说的最高杰作(ARG1) 

Original: Top Gear 在全世界拥有多达 3 亿 5,000 万观众。 
(Top Gear has more than 350,000,000 audiences in the world) 

Transformed: Top Gear在全世界拥有多达 350000000观众 。 

Figure 2. Numeric Format Transformation Example 

Figure 1. System Architecture 

Text & 
 Hypothesis 
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& prediction 
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3.3 FEATURE CALCULATION 
In this subsection, we describe in detail the features that are used 
to generate a feature vector for each text (T) and hypothesis (H) 
pair, which would be used for training and prediction with 
LibSVM. All features return a value between 0 to 1, which is done 
by normalizing the result with certain measures of T or H. This 
normalization process could also reflect the direction of 
entailment, which is important in MC. All features are calculated 
in aspects of T and H to reflect direction of entailment as well. 

3.3.1 Exclusive Word 
This feature calculates the amount of words in H that does not 
exist in T. This amount is then normalized by the amount of 
words within T or H. 

3.3.2 Sentence Length Based Entailment 
This feature return 1 if H has more words than T. Return 0 
otherwise. 
Another version is to return 1 if T has more words than H, return 
0 otherwise. 

3.3.3 N-Gram Overlap 
This feature first calculates the amount of identical n-grams 
within T and H on character level. Then normalize it with the 
amount of possible n-grams that could contain T or H as the result 
for this feature. We consider only bigrams and trigrams. 

3.3.4 Word Overlap 
This feature is identical to n-gram overlap, but we consider n-
grams at word level. 

3.3.5 Matching Words 
This feature first calculates the amount of identical words within 
T and H. Then it is normalize it by the amount of words in T or 
the amount of words in H. 

3.3.6 LCS Similarity 
This feature first calculates the length of the longest common 
string (LCS) of T and H. Then it is normalized by the total length 
of all possible substrings in T or in H. 

3.3.7 Levenshtein Distance 
Levenshtein distance, also know as edit distance, considers the 
minimum amount of operations for one string to transform to 
another. Here, we calculate the amount of operations needed to 
transform from T to H at word level. Then it is normalized by the 
total amount of words within T or H. 

3.3.8 Common String Overlap 
This feature first calculates the total length of all common 
substrings in T and H. Then it is normalized by the length of T or 
H . 

3.3.9 Cosine Similarity 
This feature first builds a word vector for T and H. Each 
dimension of the vector represents the occurrence frequency of a 
certain word within the sentence. We then calculate the cosine 
similarity between the word vector of T and H. 

3.3.10 Disconnected Dependencies 
The dependency relation generated by Stanford parser is in the 
format as follow: 

Relation ( Head - Head# , Modifier - Modifier# ) 

In this feature we first extract all nouns (words with POS tag of 
“NN”, “NR”, “NT” labeled by Stanford parser) from T and H to 
get NounListT and NounListH.  

In the aspect of H, all nouns in NounListH have to exist in 
NounListT for further calculation. Then we go through all 
dependencies in H, which both Head and Modifier is in NounListH, 
and calculate the amount of dependencies in T that has the same 
relation but different Head and Modifier. This amount is then 
normalized by the amount of dependency in T or H. 
As for the aspect of T, all nouns in NounListT have to exist in 
NounListH for further calculation. Then we go through all 
dependencies in T, which its Head and Modifier is in NounListT, 
and calculate the amount of dependencies in H that has the same 
relation but different Head and Modifier. This amount is then 
normalized by the amount of dependency in T or H. 

A non-strict version of this feature is to neglect the criteria that all 
nouns in NounListH have to exist in NounListT, or all nouns in 
NounListT have to exist in NounListH. 

3.3.11 Missing Arguments 
In this feature we first extract all nouns (words with POS tag of 
“NN”, “NR”, “NT” labeled by Stanford parser) from T and H to 
get NounListT and NounListH.  

In the aspect of H, we calculate the amount of nouns in NounListH 
that is not in NounListT. This amount is normalized by the amount 
of nouns in NounListT or in NounListH. 

As for the aspect of T, we calculate the amount of nouns in 
NounListT that is not in NounListH This amount is normalized by 
the amount of nouns in NounListT or in NounListH. 

3.3.12 Missing Relation 
In this feature, we go through all dependencies in H and check if 
there’s any dependency in T that has the same “relation”. If no 
dependency of the same “relation” exists in T, we have a missing 
relation. We calculate the amount of missing relations in H and 
normalize it by the amount of dependencies in T or H. 
In the aspect of T, we would go through all dependencies in T and 
calculate the amount of missing relations, and then normalize it by 
the amount of dependencies in T or H. 

3.3.13 Connected Dependencies 
In this feature we first extract all nouns (words with POS tag of 
“NN”, “NR”, “NT” labeled by Stanford parser) from T and H to 
get NounListT and NounListH.  
In the aspect of H, all nouns in NounListH have to exist in 
NounListT for further calculation. Then we go through all 
dependencies in H, which its Head and Modifier is in NounListH, 
and calculate the amount of identical dependencies in T. This 
amount is then normalized by the amount of dependency in T or H. 

As for the aspect of T, all nouns in NounListT have to exist in 
NounListH for further calculation. Then we go through all 
dependencies in T, which its Head and Modifier is in NounListT, 
and calculate the amount of identical dependencies in H. This 
amount is then normalized by the amount of dependency in T or H. 

A non-strict version of this feature is to neglect the criteria that all 
nouns in NounListH have to exist in NounListT, or all nouns in 
NounListT have to exist in NounListH. 

3.3.14 Independent Negative Dependency 
In this feature, we return 1 when there exist a dependency in H 
that satisfy, 
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1. The relation of the dependency is “neg”. 

2. In the dependencies of T exists one that has the same Head 
as the current dependency in H and its relation is not “neg”. 

0 is returned if such case doesn’t exist. 
Another version is considering from the aspect of T, which we 
return 1 when there exist a dependency in T that satisfy, 
1. The relation of the dependency is “neg”. 

2. In the dependencies of H exists one that has the same Head 
as the current dependency in T and its relation is not “neg”. 

0 is returned if such case doesn’t exist. 

3.3.15 Contradiction Dependency 
In this feature, we return 1 when there exist a dependency in H 
that satisfy, 
1. The relation of the dependency is “neg”. 

2. In the dependencies of T doesn’t exists one that has the same 
Head as the current dependency in H and its relation is “neg”.  

0 is returned if such case doesn’t exist. 
Another version is considering from the aspect of T, which we 
return 1 when there exist a dependency in T that satisfy, 
1. The relation of the dependency is “neg”. 

2. In the dependencies of H doesn’t exists one that has the same 
Head as the current dependency in T and its relation is “neg”. 

0 is returned if such case doesn’t exist. 

3.3.16 CKIP POS tag 
CKIP part-of-speech tags give more detail labeling in Chinese for 
proper nouns, places, location, time, numbers, and amounts with 9 
tags: “Nb”, “Nc”, “Ncd”, “Nd”, “Neu”, “Neqa”, “Neqb”, “Nf”, 
“Ng”, “Nh”. If H doesn’t contain or have different content than T 
under these labels, it is likely that T doesn’t entail H. 

So we generate a feature value for each tag. Each feature checks if 
T contains the tag in concern, -1 is returned when no words in T is 
labeled with the tag. Extract all words that are labeled with the tag 
in concern in T and H to get two word lists: WordListT, tag and 
WordListM, tag. If WordListT, tag and WordListM, tag matches each 
other in every element return 1, return 0 if else. 

3.3.17 CILIN Synonyms 
The features described above matches words base on exact match, 
which would consider synonyms as different entities and lead to 
misjudging when calculating features to determine entailment. 

To encounter this issue, we applied a Chinese thesaurus 
tong2yi4ci2ci2lin2 ("同義詞詞林") [6], which lists 65,464 words 
in the format as shown in Figure 4. 

  
Each word is given a unique code in the format as follow, 

MainClass# . SubClass1# . SubClass2# .% 

In Figure 3, we can see the first two words “加快” and “加速” 
both means “speed up”, they have identical MainClass# and 
SubClass1# but different SubClass2#. So is the following three 
words “放慢”, “降速”, and “減速”, all means “slow down”.  

So during certain feature calculations which involves matching 
two words, beside exacting string match we also check and see if 
both words can be found within this thesaurus and have the same 
MainClass# and SubClass1#. If this criterion is satisfied, we 
consider the two words to be identical as well. This is applied in 
the following features mention previously to form a new feature 
for calculation: Exclusive words, disconnected dependencies, 
connected dependencies, and missing arguments. 

3.4 CONCEPT FEATURE CALCULATION 
In this subsection, we discuss about the features calculated from 
concepts extracted from each T and H. 

Considering concepts represent information extracted from each 
sentence, T is likely to entail H if T has the same or more 
information than H. And it’s likely that entailment doesn’t exist if 
H contains information not included in T. The following features 
tend to reflect this information in different aspects. 

3.4.1 Concept Amount Difference 
This feature calculates the difference of the amount of concepts in 
H compared to T. This amount is then normalized by the amount 
of concepts in T or H. 
Another version is to calculate the difference of the amount of 
concepts in T compared to H, and then normalize by the amount 
of concepts in T or H. 

3.4.2 Predicate Miss 
Since concepts are based on predicates extracted from a sentence, 
amount of difference in predicates would reflect the magnitude of 
difference in two sentences. 

In this feature, we calculate the amount of predicates in H that is 
not in T, and normalize by the amount of predicates in H. 
Another version is to calculate the amount of predicates in T that 
is not in H, and normalize by the amount of predicates in T. 

3.4.3 Argument Miss 
Beside predicates, argument is also an important component of 
concepts. 

加快(speed up) Ih08.01.001.% 
加速(speed up) Ih08.01.002.% 
放慢(slow down) Ih08.02.001.% 
降速(slow down) Ih08.02.002.% 
減速(slow down) Ih08.02.003.% 

… 
推遲(delay) Ih07.02.001.% 
延遲(delay) Ih07.02.002.% 

Figure 4. Chinese thesaurus tong2yi4ci2ci2lin2 
data example 
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So in this feature we look for the amount of arguments in H that is 
not in the arguments of T under the same predicate. This amount 
is then normalized by the total amount of arguments in H. 

Another version is to calculate the amount of arguments in T that 
is not in the arguments of H under the same predicate. This 
amount is then normalized by the total amount of arguments in T. 

3.4.4 Argument SRL Miss 
Since each argument has been given a semantic role label, it is 
likely that a pair of sentence has the same information, if the 
argument from the same predicate with the same SRL is identical. 

So in this feature we look for the amount of arguments in H that is 
not in the arguments of T, under the same predicate and same 
SRL. This amount is then normalized by the total amount of 
arguments in H. 

Another version is to calculate the amount of arguments in T that 
is not in the arguments of H under the same predicate and same 
SRL. This amount is then normalized by the total amount of 
arguments in T. 

3.4.5 SRL Miss Amount 
Semantic role labels of “ARGM-LOC” and “ARGM-TMP” are 
labels for location and time. It is likely that T entails H when the 
location and time information in H is identical to the same 
information in T. 

So in this feature, we go through all concepts in H to see if we 
could find arguments with SRL as “ARGM-LOC” or “ARGM-
TMP”, and if there exists an identical argument in T with the 
same SRL. If such argument doesn’t exist in T, a SRL miss occur. 
We calculate the amount of SRL miss and normalize it by the 
amount of arguments in H with SRL as “ARGM-LOC” or 
“ARGM-TMP”. 

Another version would be going through concepts in T and 
calculate the amount of SRL miss of H, then normalize it by the 
amount of arguments in T with SRL as “ARGM-LOC” or 
“ARGM-TMP”. 

4. EVALUATION 
The Training data for BC task are 1321 labeled sentence pairs in 
Traditional Chinese from RITE2, and 581 labeled sentence pairs 
each in Traditional and Simplified Chinese from RITE-VAL 
training data. As for the MC task, we have 1321 labeled sentence 
pairs in Traditional Chinese from RITE2, and 581 labeled 
sentence pairs each in Traditional and Simplified Chinese from 
RITE-VAL training data. 

The test data for Traditional Chinese and Simplified Chinese in 
BC and MC each have 1200 unlabeled sentence pairs. 

Our system is developed with knowledge sources and tools that 
handle Simplified Chinese, so when dealing with Traditional 
Chinese sentence pairs in training and testing data, we convert 
them into Simplified Chinese, as mentioned in 3.1.1, before 
further processing. 

We submitted one run for each task. The official evaluation 
results are shown in Table 1~4. 

 

 

 

Table 1. Evaluation result on binary-class (BC) classification 
in Simplified Chinese (CS) data set 

 Precision Recall F1 

Y 50.89 86.00 63.94 

N 54.84 17.00 25.95 

Macro F1   44.95 

 

Table 2. Evaluation result on binary-class (BC) classification 
in Traditional Chinese (CT) data set 

 Precision Recall F1 

Y 50.84 86.17 63.95 

N 54.64 16.67 25.54 

Macro F1   44.74 

 

Table 3. Evaluation result on multiple-class (MC) 
classification in Simplified Chinese (CS) data set 

 Precision Recall F1 

F 50.75 68.00 58.12 

B 35.03 71.00 46.92 

C 33.71 19.67 24.84 

I 53.33 2.67 5.08 

Macro F1   33.74 

 

Table 4. Evaluation result on multiple-class (MC) 
classification in Traditional Chinese (CT) data set 

 Precision Recall F1 

F 50.62 68.00 58.04 

B 35.35 72.00 47.42 

C 33.92 19.33 24.63 

I 53.33 2.67 5.08 

Macro F1   33.79 

 

5. CONCLUSION 
In this paper, we described our system built for the system 
validation subtask of NTCIR-11 RITE-VAL task. Our system first 
preprocesses each sentence pair through a series of well-known 
NLP analysis. We introduced a novel idea of extracting concepts 
from a sentence. With the preprocessing analysis, we calculate a 
feature vector for each sentence pair. The feature vectors of 
labeled sentence pairs are then used for training a SVM model 
with LibSVM. This model is then used to predict the labels of 
feature vectors of unlabeled sentence pairs. 
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