

MIG at NTCIR-11: Using Lexical, Syntactic, and

Semantic Features for the RITE-VAL Tasks

Po-Cheng Lin, Shu Yu Lin, Chih Kai Haung, Chao-Lin Liu
Department of Computer Science, National Chengchi University
64 Chih-Nan Road Section 2, Wen-Shan, Taipei 11605, Taiwan

{101753028, 102753020, 102753029, chaolin}@nccu.edu.tw

ABSTRACT

In this paper, we describe our methods for the English and

Chinese RITE-VAL tasks. We extracted relevant sentences

from Wikipedia to verify the correctness of the query

statements. Computational models that considered various

linguistic features were built to select Wikipedia articles that

contained these relevant sentences. We adopt Linearly

Weighted Functions (LWFs) to balance the importance of

every features and judge the answer of each query statement

by the outputs of LWFs.

Team Name

MIG

Subtasks

RTIE-VAL Fact Validation EN/CS/CT

General terms

Algorithm, Experimentation, Languages

Keywords

Natural Language Processing, Textual Entailment,

Information Retrieval, Negation and Antonyms, Linearly

Weighted Functions

1. INTRODUCTION

Applications of natural language processing techniques have

sprung up in the recent years. To improve the performance,

experts extract useful linguistic features from words, sentences,

and even articles, trying to figure out the meanings of texts and

speeches. If we can let computer know natural languages’

meanings, it will be helpful for teaching or even creating a

more convenient tools.

In RITE-VAL, the purpose is to determine whether a query

statement is contradiction or entailment[13]. Contradiction

means that the query statement is not true. In practice, we

judge this by searching the Wikipedia [11]. If we find clues

that go against the query statement, we would classify the

statement as contradiction. In contrast, if we find clues that

support the query statement, then the sentence will be

classified as entailment. At last, if there is no obvious reasons

to support to disapprove the sentence we tag the sentence as

“Unknown”.

We try to find relatively important words in query statement.

By finding such information, we can extract some related

articles and sentences in Wikipedia. After that, we employ

some features to compute the weight for each of related

sentence, and consider some semantic features for the final

judgments. We also adopt the data provided by NTCIR to train

the parameters and threshold for our LWFs. If the score for a

query statement is higher than the threshold, then the sentence

is “Entailment”, otherwise the sentence will be

“Contradiction”.

We explain our methods for extracting articles and

sentences that are potentially related to a given query from

Wikipedia in Section 2. We will then deliberate on further

processing steps for the extracted materials in an attempt to sift

those information that are really related to the query in Section

3. In Section 4, we discuss our methods for entailment

recognition.

2. EXTRACT ARTICLES AND SENTENCES

In this section, we adopt two ways to extract related articles

and sentences for English corpus and Chinese corpus

respectively, we will show as below.

For English corpus, as the picture in Figure 1, we

disassemble query statement into word, phrase and strings.

Extract those synonyms by accessing WordNet[12]. Then, we

combine all the results we get as keywords to do request to

Wikipedia. If there is a article title in Wikipedia that is match

our keywords then we will extract whole article as our related

articles.

After that, we split all the articles into sentences. However,

not entire sentences are related to the query statement, so we

make a filter to choose the sentences those are relevant to

query statement. Our strategy is to choose sentences those

have greater than or equal to 2 words match to the query

statement, and those words’ parts of speech must be noun,

verb or adjective. Finally we can shrink the range into some

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

332

Figure 1.The flow of extracting article and sentences for English corpus.

Figure 2. The flow of extracting article and sentences for Chinese corpus.

sentences those are more related to query statement.

For Chinese corpus, as the picture shown Figure 2, the

approaches of retrieve correlated atricles from wikipedia

corpus have two ways.

One way is using wikipedia corpus to set a retrival system

by Lucene[6]. Then, using the sentences as query to retrieve

articles. The other is extract Nouns in sentences. Checking

whether there are titles same as Nouns or not. If they are same,

we also make it as correlated article. Thus, we split article's

paragraphs to sentences. After that we use the word overlapped

and Bilingual Evaluation Understudy (BLEU)[1] measurement

to calculate the correlation between argument and sentences in

the articles, and take top 30 as related sentences.

Figure 3. The method of calculating sentence relatedness.

3. COMPUTE SENTENCE RELATEDNESS

After section 2, every query statement can obtain their related

sentences from Wikipedia’s article. But there is a question

inside, how much relatedness between related sentence and

input words. The degree of relatedness will greatly effect the

recognition result, so we try to quantify the relatedness degree

of each related sentences .

In Figure 3, sentence relatedness is compose into two parts.

One is related sentence itself, the other is the article where

related sentence comes from. In the first part, we extract five

features value between related and query statement.

A. Word Overlap Ratio :

Comparing query statement and related sentence. If there exist

same words in both sentences, then we call it word overlap.

Therefore, the more same words extist, the more ratio it will

get.

Word Overlap Ratio =
Word Overlap Number

Word Number Of Query statement
 (1)

B. Longest Common String Similarity(LCSS):

We extract query statement and related sentence’s Longest

Common String (LCS)[5] as an important linguistic feauture,

that is, if we have two sentence below :

Sentence1: “ABCDEFGH”

Sentence2: “ABIJDEFKLMN”

Then, the LCS will be “ABDEF”. And according to the

formula (2), we can compute that the LCSS in this example is

0.375.

LCSS =
LCS

Length of Query Statement
 (2)

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

333

C. Name Entity Overlap Ratio :

We tag name entity[7] (PERSON, ORGANIZATION,

LOCATION) on both query statement and related sentence by

using Stanford NER. After that, we compare both sentence’s

name entity, The more same name entity exist, the higher ratio

it will get.

D. Bilingual Evaluation Understudy :

BLEU is an algorithm for evaluating the quality of text which

has been machine-translated from one natural language to

another. We use it to check two sentence’s similarity.

E. Parse Tree Similarity :

In order to obtain sentence semantic structure, we use Stanford

Parser[8] to parse query statement and related sentence. To

extract sentence’s semantic structure similarity[3] there is a

procedure as below:

Step1:Compute LCS between related sentence and query

statement.

Step2:Compare the difference between the LCS and query

statement, if there exist a token that LCS is different from

query statement, then we record it into a table.

Step3:We do insertion operation to insert some node into the

LCS by cheking out the table. After the LCS becomes query

statement, the node number we add is the cost of insertion

operation. Therefore, if insertion operation is less, then it

shows that the pair of sentence have less differences. After the

procedure, we can obtain a value that can represent Parse Tree

Similarity.

To figure out related sentence weights, we set the features

value above as a, b, c, d and e. We make them as a set of

space vector. Therefore, after extracting the features, we can

assume the starting point is (0,0,0,0,0) and corresponding

related sentences coordinates are (a,b,c,d,e). Hence, we can

compute two sentences distance value. The higher value it get,

the higher sentence weights it will obtain.

The second part is related article weight. If we can find

many related sentences in a article, then we can also say, that

article have certain degree of representation. Therefore, we try

to figure out the importance of each related article as below’s

formula, and the related sentences’ weight will also be decided

depends on each articles they come from. Let x = Total related

sentence numbers of each relate articles; y = Total related

sentence numbers of each query statement.

Related Article Weight =
 x

y
 (3)

Finally, we multiplied sentence weight and article weight as

every sentence’s relatedness. And that value is represent that

how related between query statement and related sentence. We

will use it in our following section. Let Sw = Related sentence

weight;Aw = Related article weight.

 Sentence Relatedness = Sw × Aw (4)

4. ENTAILMENT RECOGNITION

In this section, we use some semantic features to figure out the

relations between related sentence and query statement. As

the Figure 4, we also adopt Linearly Weighted

Functions(LWFs)[4] to be our main method to validate our

sentence.

Here comes the introduction of each features :

A. Antonyms, Negation Adverb and Negation

Words Detection :

To determine a pair of sentence which is entailment or

contradiction, antonyms, negation adverb and negation words

are important information to deduce it. In other words, even

though two sentences have high value of Word Overlap Ratio,

if there exist antonyms or negation words, the meaning will be

entirely different.

We compare query statement and related sentence. If there

exist same words that is modified by antonyms, negation

adverb or negation words, then we compute the relation that is

positive or negative. If we get the relation is positive then the

feature’s value is 1, else the value will be -1.

B. Passive Detection :

We compare query statement and related sentence. Detecing

both sentences those are active or passive sentence. If those are

the same, then we give 1 as feature’s value, else the value will

be -1.

C. Subject and Object Match Ratio:

If there have same subject or object in query statement and

related sentence, In other words, we can say both two

Figure 4. The method of entailment recognition.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

334

sentences are probably discribing same things or showing

same information. As the formula below, the more same

subject or object we get, the higher feature value we can get.

Subject and Object Match Ratio

=
Subject and Object Overlap Number

 Number Of Subject and Object in Query statement
 (5)

D. Number Match Ratio :

Number is important information to detect two sentences’

relationship. As the formula shown below, if two sentences

have totaly same number, then they have high posibility as a

positive entailment relationship.

Number Match Ratio

=
Number word Overlap Quantity

Quantity Of Number word in Query statement
 (6)

E. Typed Dependencies Similarity:

Typed Dependencies[9] means the direct relationship between

two words. We make two matrixes to put two sentence typed

dependency sets inside. Then we multiply itself twice, three

and four times to find its transition matrix. After that, we can

obtain the matrix that appears the result of two, three and four

steps of typed denpencies relations, it means, we have the

indirect relationship between every words in every sentences.

Therefore we can compare both related sentence and query

statement’s transition matrixes. If there exist same typed

denpencies relations then we can say those two typed

dependencies are somehow interconnected to each other.

After extracting the features above, we combine those

features and all related sentences’ weight. Putting those value

into Linearly Weighted Functions as below. Hence we can

train every feature’s parameter(α, β, γ, δ, ε) and observe that

which linguistic feature is much useful to help us validate the

sentence.

 Linearly Weighted Functions(LWFs) is the formula as

below. We assume one query statement has 30 related

sentences and F1 to F5 are the features we introduce above.

Moreover, α, β, γ, δ, ε are parameters of each features and

𝑤𝑆 , 𝑤𝐴 are sentence weight and article weight respectively.

 𝑤𝑆30*𝑤𝐴30（α 𝐹1𝑆30 +β 𝐹2𝑆30 +γ𝐹3𝑆30 +δ𝐹4𝑆30 +ε𝐹5𝑆30）(7)

We can obtain LWFs Score by the LWFs formula and

validate the query statement whether it is “Entailment”,

“Contradiction” or “Unknown” as formula (8). Besides, the

value of Threshold1 and Threshold1 are trained by RITE-2 and

Table 1. Formal run result

Task Accuracy Macro-F1

RITE-VAL EN Run 01 51.06 49.41

RITE-VAL EN Run 02 50.53 49.64

RITE-VAL CN Run 01 36.70 30.88

RITE-VAL CN Run 02 35.89 31.07

RITE-VAL CS Run 01 36.70 30.88

RITE-VAL CS Run 02 35.89 31.07

RITE-VAL training data, so we validate our query statement

according to the value of threshold1 and threshold2. Finally if

LWFs Score >= Threshold1, then the sentence will be tagged

into “Entailment”. If LWFs Score <= Threshold2, then the

sentence will be tagged into “Contradiction”. If Threshold2<

LWFs Score < Threshold1, then the sentence will be tagged

into “Unknown”. Let Threshold 1 = t1; Threshold 2 = t2.

𝑄𝑢𝑒𝑟𝑦 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛

= {

𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 𝐿𝑊𝐹𝑠 𝑆𝑐𝑜𝑟𝑒 >= 𝑡1
𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐿𝑊𝐹𝑠 𝑆𝑐𝑜𝑟𝑒 <= 𝑡2 (8)

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝑡2 < 𝐿𝑊𝐹𝑠 𝑆𝑐𝑜𝑟𝑒 < 𝑡1

5. EVALUATION

The table 1 shows the formal run results of RITE-VAL “EN”,

“CN”, and “CS” tasks. The parameter sets of each run, we pick

better performance set in training data. In RITE-VAL EN task,

we can see the accuracy and macro-f1 falls on about 50%. It is

not as good as our anticipation, but we get the second place in

the task.

In RITE-VAL CN and CS tasks, our best performance is

36.7% of accuracy and 30.88% of marco-f1. In our training

data performance, we can get about 48% of accuracy. The

reason why we get large of difference between training set and

formal run set is, the data’s differences is large. The training

data’s content, is describe about common sense knowledge,

the difficulties is about the test of elementary school. And the

formal run data is much harder than training data, so that is the

main reason for causing the differences.

6. DISCUSSION

This paper reports our system in the NTCIR-11 RITE-VAL

EN, CT, CS sub-tasks. The results were not as good as we

expected, and we thought that there are three possible ways to

make our performance better.

First is about features, we should build more features

concerning semantic level, that can help us know more about

meaning. Second, we should try different ways to filter our

related sentences, that is, a more considerate procedure is in

need to identify those really relevant sentences in Wikipedia.

Currently, we chose linearly weighted functions to be our

method to judge the answer. We should try more advanced

 LWFs Score =
 𝑤𝑆1*𝑤𝐴1（α 𝐹1𝑆1 +β 𝐹2𝑆1 +γ𝐹3𝑆1 +δ𝐹4𝑆1 +ε𝐹5𝑆1）+

 𝑤𝑆2*𝑤𝐴2（α 𝐹1𝑆2 +β 𝐹2𝑆2 +γ𝐹3𝑆2 +δ𝐹4𝑆2 +ε𝐹5𝑆2）+
 …

 …

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

335

methods like SVM[10] for the task. We probably should

compare different methods, so that we may have a better

performance.

Acknowledgment
This work was supported in part by the grant MOST-102-

2420-H-004-054-MY2 from the Ministry of Science and

Technology of Taiwan.

References

[1] BLEU, http://en.wikipedia.org/wiki/BLEU

[2] Wei-Jie Huang and Chao-Lin Liu. 2013. NCCU-MIG at

NTCIR-10: Using Lexical, Syntactic, and Semantic Features for

the RITE Tasks. In Proceedings of the 10
th

 NTCIR

Conference, Tokyo, Japan, 430-434.

[3] Guoliang Li, Xuhui Liu, Jianhua Feng, and Lizhu Zhou,

Efficient Similarity Search for Tree-Structured Data, Author

Affiliations: Department of Computer Science and Technology,

Tsinghua University, Beijing, 100084, China

[4] Linearly Weighted Functions,

http://en.wikipedia.org/wiki/Weight_function

[5] Longest Common String,

http://en.wikipedia.org/wiki/Longest_common_substring

_problem

[6] Lucene, http://lucene.apache.org/core/

[7] Stanford NER, http://nlp.stanford.edu/ner/

[8] Stanford Parser, http://nlp.stanford.edu/software/lex-

parser.shtml

[9] Stanford Typed Dependencies,

http://nlp.stanford.edu/software/dependencies_manual.pd

f

[10] SVM,

http://en.wikipedia.org/wiki/Support_vector_machine

[11] Wikipedia, http://en.wikipedia.org/wiki/Main_Page

[12] WordNet, http://wordnet.princeton.edu/

[13] Yotaro Watanabe, Yusuke Miyao, Junta Mizuno,

Tomohide Shibata, Hiroshi Kanayama, C.-W. Lee, C.-J.

Lin, Shuming Shi, Teruko Mitamura, Noriko Kando,

Hideki Shima and Kohichi Takeda. 2013. Overview of

the Recognizing Inference in Text (RITE-2) at the

NTCIR-10 Conference, Proceedings of NTCIR-10

Conference.

Proceedings of the 11th NTCIR Conference, December 9-12, 2014, Tokyo, Japan

336

http://en.wikipedia.org/wiki/BLEU
http://en.wikipedia.org/wiki/Weight_function
http://en.wikipedia.org/wiki/Longest_common_substring_problem
http://en.wikipedia.org/wiki/Longest_common_substring_problem
http://lucene.apache.org/core/
http://nlp.stanford.edu/ner/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Main_Page
http://wordnet.princeton.edu/

