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ABSTRACT
Conventional spoken term detection (STD) techniques, which
use a text-based matching approach based on automatic
speech recognition (ASR) systems, are not robust for speech
recognition errors. This paper proposes a conditional ran-
dom fields (CRF)-based combination (re-ranking) approach,
which recomputes detection scores produced by a phoneme-
based dynamic time warping (DTW) STD approach. In the
re-ranking approach, we tackle STD as a sequence label-
ing problem. We use CRF-based triphone detection models
based on features generated from multiple types of phoneme-
based transcriptions. They train recognition error patterns
such as phoneme-to-phoneme confusions on the CRF frame-
work. Therefore, the models can detect a triphone, which
is one of triphones composing a query term, with detection
probability. In the experimental evaluation on the NTCIR-
11 SpokenQuery&Doc SQ-STD test collection, the CRF-
based approach and the combination approach of the two
STD systems could not outperform the conventional DTW-
based approach we have already proposed.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Multiple recognizers, phoneme transition network, spoken
conetent retrieval, spoken term detection, spoken document
segmentation, CRF

Term name: [ALPS]
Subtask: [SQ-STD (text query only)]
Language: [Japanese]

1. INTRODUCTION
Spoken term detection (STD) is designed to determine

whether or not a given utterance includes a query term con-
sisting of a word or phrase. STD research has become a hot
topic in the spoken document processing research field, and
the number of STD research reports is increasing in the wake
of the 2006 STD evaluation organized by National Institute
of Standards and Technology [1].

The difficulty in STD lies in the search for terms under
a vocabulary-free framework because search terms are not
known prior to a large vocabulary continuous speech recog-
nition (LVCSR) system. Many studies tackling STD have
already been proposed [2, 3]. In the past, most STD studies
focused on out-of-vocabulary (OOV) and speech recognition
error problems. For example, STD techniques using subword
(syllable or phoneme)-based lattices or confusion networks
(CN) have been proposed [3]. In recent works, we also pro-
posed a CN-based indexing and a dynamic time warping
(DTW)-based search engine [4]. The CN-based index, which
we call “Phoneme Transition Network (PTN)-formed index
[4],”was made of 10 types of transcriptions generated by the
10 different automatic speech recognition (ASR) systems, in-
cluding an LVCSR system and a phoneme recognition sys-
tem. We have shown that our proposed method could out-
perform other STD technologies that participated in the
ninth National institute of informatics Testbeds and Com-
munity for Information access Research (NTCIR-9) project
STD evaluation framework [5]. A DTW-based matching be-
tween a subword sequence of a query term and a transcrip-
tion of speech is weak for speech recognition errors. There-
fore, the STD performance of the DTW-based technique de-
pends on the accuracy of subword-based transcriptions.

Our DTW-based approach using a PTN-formed index for
STD was very robust for ASR errors. However, this ap-
proach output many false detections because the structure
of PTN was complex [6]. These false detections degraded
the STD performance. In this paper, we focus on control-
ling false detections in a second-pass stage using a machine
learning approach. Figure 1 shows our STD framework.

We explore triphone detection modeling by using a condi-
tional random fields (CRF)-based framework for detecting
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Figure 1: Overview of the two-pass STD framework
using CRF-based triphone detection modeling.

query terms. A triphone detection model for each possi-
ble triphone is trained by using features generated from 10
types of phoneme-based transcriptions; all the trained mod-
els train recognition error patterns such as phoneme con-
fusion. This approach is sensible because the features for
CRF models are prepared for making a PTN-formed index,
which is also derived from 10 types of transcriptions, used
in the first-pass of the entire STD framework. In the STD
re-ranking process, first a query term is decomposed to tri-
phones, and for each triphone, whether or not a given utter-
ance includes that triphone is determined using the corre-
sponding CRF-based triphone model. Next, we calculate the
probability of the product of the outputs of all the models.
It is a detection probability of the query term of the given
utterance. Finally, the probability is used to recompute the
score of detection by the DTW-based approach. Naturally
the CRF-based approach can work alone. In the experi-
ment, we will show the STD performance of the CRF-based
approach only.
Our CRF-based approach is similar to the previous re-

searches [7, 8]. In these approaches, a phoneme sequence of
a target speech is estimated by CRF models trained using
ASR hypothesis-based features. This idea is close to the
acoustic modeling framework using CRF [9]. The Chaud-
hari’s technique [7, 8] was effective for the OOV detection
task because the CRF models well learned the confusions of
phonemes.
Our approach is positioned as an extension study of [7,

8], and solves STD as a triphone sequence labeling problem
for speech data. The DTW-based approach using multiple
ASR systems’ outputs we have proposed improved an STD
performance [4]. Therefore, we are worth trying a CRF-
based triphone detection approach based on features from
different types of transcriptions from ASR system’s outputs.
Another machine learning approaches for STD have been

recently increasing. For example, Prabhavalkar et al. [10]
proposed articulatory models by discriminative training for
STD under the low-resource settings. They challenged an
STD framework without any LVCSR system, and their mod-
els could directly detect a query term from acoustic feature
vectors. On the other hand, a multiple linear regression, sup-
port vector machines, and multi layer perceptions were also
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Figure 2: Overview of the first-pass stage using
DTW-based matching.

used to estimate confidence of the detected candidates in a
decision process [11, 12] or in a re-ranking process [13]. Our
CRF-based models train phone-to-phone confusion patterns
on the basis of multiple types of transcriptions, which is dif-
ferent from these previous works. In addition, our study tries
to investigate the effectiveness of the combination of outputs
of multiple ASR systems. This is a new “cherry-picking” ap-
proach based on machine learning. The novelty of this study
is that CRF is extended to provide the detection probability
of a query term, and it is also used in the decision process
on the second pass of our STD framework by combining the
DTW-based STD score with the CRF-based probability.

The rest of the paper is organized as follows: we first
shortly present the baseline system (the DTW-based ap-
proach) in Section 2, and then introduce the CRF-based
triphone detection modeling and how to detect a query term
from speech in Section 3. Section 4 explains about the re-
ranking process using the CRF-based STD. The experimen-
tal settings and results are presented in Section 5, and some
conclusions in Section 6.

2. DTW-BASED APPROACH USING MUL-
TIPLE ASR SYSTEMS’ OUTPUTS

The DTW-based STD approach using PTN-formed index
[4] is performed in the first-pass stage in the entire STD
framework. It is also the baseline approach. Figure 2 shows
an overview of the baseline method. In the indexing phase,
speech data is performed by ASR, and the recognition out-
puts (words or sub-word sequences) are converted into the
PTN-formed index for STD. Figure 3 shows an example of
a PTN-formed index.

In the search phase, the word-formed query is converted
into a phoneme sequence. Then, the phoneme-formed query
is input to the term search engine. The term search engine
searches the query term from the index at the phoneme level
using the DTW framework. Unlike combination techniques
of multiple STD systems like [20], the baseline system com-
bines the transcriptions produced by multiple ASR systems.

Figure 4 represents an example of the DTW framework
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Figure 3: Generating a PTN-formed index by per-
forming alignment using DP and converting to a
PTN.

between the search term “k o s a i N” (cosine) and the
PTN-formed index. The PTN has multiple arcs between
two adjoining nodes. These arcs are compared to one of the
phoneme labels of a query term. We use edit distance as
cost on the DTW paths, and the cost value for substitution,
insertion, and deletion errors is commonly set to 1.0. The
details of this approach is discussed on our previous paper
[4].

3. CRF-BASED TRIPHONE DETECTION
MODELING

Figure 5 shows an overview of the STD process using
CRF-based triphone detection modeling in the second-pass
stage in the entire STD framework. In this study, we use
just 10 types of phoneme-based transcriptions generated by
10 different ASR systems for training CRF-based models.
A query term is translated into a phoneme sequence and
decomposed into triphones. Then, a CRF-based triphone
model calculates the existence probability of the triphone
corresponding to that model in an utterance. The final term
detection probability (or score) is based on the product of
the outputs of all the models. In this research, we prepared
two types of acoustic models (AMs), five types of language
models (LMs), and a decoder. The combinations of AMs
and LMs produced 10 ASR systems. The model details will
be explained in Section 5.1.
CRFs [14] have been successfully used in numerous text

processing tasks, such as named-entity extraction [15] and
phrase chunking [16]. In the speech processing area, CRFs
are used for sentence boundary detection [17] and OOV de-
tection in speech [18].
The conditional probability of an input sequence x, given

an output label sequence y, is calculated as:

P (y|x) = 1

Z(x)
exp(

∑
k

λkFk(y,x)) (1)

where Fk(y,x) is a feature vector for input sequence x and
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Figure 4: Example of term search on network-
formed index.

label sequence y, and λk is a weight parameter for Fk(y,x).
Z(x) is a normalization factor given by:

Z(x) =
∑
y

exp(
∑
k

λkFk(y,x)) (2)

To train phoneme-to-phoneme confusions as the error pat-
tern training, we utilized features on the basis of the phoneme-
based transcriptions by 10 different ASRs shown in Figure
6, representing examples of features derived from phoneme-
based transcriptions and the beginning, inside, outside (BIO)
encoding. A dynamic programming (DP)-based alignment
procedure [19] was performed on phoneme-based transcrip-
tions to make an alignment for each transcription. We uti-
lized the BIO encoding in the CRF-based triphone detec-
tion modeling. Therefore, each CRF-based model finds BI
tag sequence(s) from an utterance. A CRF-based model was
trained for each possible triphone generated by pronuncia-
tion of the words. As shown in Figure 6, phoneme-based
unigram, bigram, and trigram features were used for CRF-
based model training. The point of this modeling is to use
cross-ASR-based features. The cross-ASR bigram features
enable a CRF-based model to capture phoneme-to-phoneme
confusion error patterns. The model can then robustly de-
tect triphones from erroneous transcriptions.

The detection probability P (T |xi) of a query term T con-
sisting of N triphones in utterance i is calculated by the
following equation:

P (T |xi) = (

N∏
j=1

Ptj (y|xi))
1
N , (lt1 < ltj < ltN ) (3)

where tj is the j-th triphone of T , xi is the input sequence
of utterance i, and y is a part of output labe sequence. ltj
means the location (position) of the beginning phoneme of
triphone tj . Ptj (y|xi) is not calculated by using the condi-
tional probability of the whole label sequence for utterance
i but calculated based on the product of probability of each
tag: B and I tag. A probability of O tag output is not con-
sidered. This idea is similar to maximum entropy modeling.
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Figure 5: Overview of the STD framework using
CRF-based triphone detection modeling.

However, CRFs have an ability to find an optimal labeling
for the entire sequence. Therefore, CRF-based models can
detect triphones with high accuracy. Finally, triphone tj
detection probability is calculated by:

Ptj (y|xi) =

Itail∏
L=B

Ptj (L|xi) (4)

where B and Itail represent the begining tag and tailing tag
of triphone tj , respectively. In other words, the detection
probability of tj is calculated by making the product of
the conditional probability of each tag between the head
B and tailing Itail tags. If Ptj (y|xi) is less than probability
ϕ, Ptj (y|xi) is set to ϕ. This prevents the very low detection
probability of T when any triphone consisting of T cannot
be detected. In this study, ϕ is heuristically set to 0.01. If
P (T |xi) is greater than a threshold θC , term T seems to
be in utterance i. Changing the threshold θC enables us to
draw the recall-precision curve on the evaluation.

4. RE-RANKING OF FIRST-PASS DETEC-
TIONS

We tried a simple combination of a DTW-based score and
a CRF-based score (same as detection probability) as follow-
ing equation, which is well-known as a weighted harmonic
mean. The recomputed score RS(T, i) of the detection is
calculated as follows:

RS(T, i) =
(γ2 + 1) ·DTW(T, i) · CRF(T, i)

γ2 ·DTW(T, i) + CRF(T, i)
(5)

where γ is a weight parameter that controls a balance be-
tween CRF(T, i) and DTW(T, i), CRF(T, i) and DTW(T, i)
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Figure 6: Example of features for CRF model train-
ing and BIO encoding.

are scores of term T in utterance i derived by the CRF-based
and the DTW-based STD methods, respectively. Both of
scores from the two approaches ranges from 0 to 1. γ is set
to 0.08, which is determined by the moderate-size query set
used in the NTCIR-10 SpokenDoc-2 [23], and common for
the all query terms on the test collection.

5. STD EXPERIMENT

5.1 Target test collection
The Corpus of the 1st to 7th Spoken Document Process-

ing Workshop (SDPWS1to7) is to be used as the document
collection for evaluating the NTCIR-11 SpokenQuery&Doc
SQ-STD subtask.

5.1.1 Speech Recognition
As shown in Figure 1, the SDPWS1to7 speech data is

recognized by the 10 ASRs. Julius ver. 4.1.3 [22], an open
source decoder for LVCSR, is used in all the systems.

We prepared two types of acoustic models (AMs) and
five types of language models (LMs) for constructing the
PTN. The AMs are triphone based (Tri.) and syllable based
HMMs (Syl.), where both types of HMMs were trained from
the spoken lectures in the Corpus of Spontaneous Japanese
(CSJ) [21].

All the LMs are word and character based trigrams as
follows:

WBC : word based trigram in which words are represented
by a mix of Chinese characters, Japanese Hiragana and
Katakana.

WBH : word based trigram in which all words are repre-
sented only by Japanese Hiragana. The words com-
posed of Chinese characters and Katakana are con-
verted into Hiragana sequences.

CB : character based trigram in which all characters are
represented by Hiragana.

BM : character sequence based trigram in which the unit
of language modeling is two of Hiragana characters.
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Non : No LM is used. Speech recognition without any LM
is equivalent to phoneme (or syllable) recognition.

Each model is trained from the many transcriptions in the
CSJ under the open for the speech data of STD.
Finally, the ten combinations, comprising two AMs and

five LMs, are formed. The condition is completely the same
as the description in the overview paper [24].

5.1.2 Query set of the STD subtasks
The NTCIR-11 SpokenQuery&Doc organizers provided

two types of query sets: the text query set and the spo-
ken query set[24]. We evaluated our STD engine on the text
query set only.

5.2 Training CRF-based model
CRF-based triphone detection models were trained from

a part of the CSJ except the 177 lecture speeches using a
CRF++ toolkit1. A total of 1,200 speeches were used to
train models. The number of trained triphone models in this
study was 10,600, derived from 48 types of Japanese mono-
phones, and we did not adapt any clustering algorithm for
grouping similar triphones together as AM training before
training CRF-based models. The most rarely occurring tri-
phone “n-e-p” among the all triphones included in the query
terms existed in only 10 utterances.

5.3 Evaluation metrics
The evaluation metrics used in this study were recall, pre-

cision, F-measure, and mean average precision (MAP) values
[5, 24]. These measurements are frequently used to evaluate
information retrieval performance and are defined as follows:

Recall =
Ncorr

Ntrue
(6)

Precision =
Ncorr

Ncorr +Nspurious
(7)

F −measure =
2 ·Recall · Precision

Recall + Precision
(8)

HereNcorr andNspurious are the total number of correct and
spurious (false) term detections, respectively, and Ntrue is
the total number of true term occurrences in the speech data.
The F-measure values for the optimal balance of Recall and
Precision values are denoted by “Max. F-measure.”
The STD performance for the query sets can be illustrated

by a recall−precision curve, which is plotted by changing the
threshold θC in the CRF-based STD method or θD in the
DTW-based baseline.
MAP is the mean of the average precision values for each

query term. It can be calculated as follows:

MAP =
1

Q

Q∑
q=1

AveP (q) (9)

whereQ is the number of whole queries andAveP (q) denotes
the average precision of the q-th query term of the query set.
Average precision is calculated by averaging the precision
values computed for each relevant term in the list in which

1CRF++: Yet Another CRF toolkit, https://code.
google.com/p/crfpp/
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Figure 7: Recall-precision curves of the STD meth-
ods.

retrieved terms are ranked by a relevance measure.

AveP (q) =
1

Relq

Nq∑
r=1

(δr · Precisionq(r)) (10)

where r is the rank, Nq is the rank number at which all the
relevance terms of query term q are detected, and Relq is
the number of the relevance terms of the query term q. δr
is a binary function for a given rank r.

5.4 Experimental results
Figure 7 shows recall-precision curves of the each STD

approaches. Table 1 also represents maximum (max.) F-
measure (micro and macro averages) and MAP values of
our STD methods. We compared the STD performances
between three STD methods in this study. The STD system
“ALPS-2 (DTW)” explained in Section 2 is the baseline in
this study, the system “ALSP-3 (CRF)” is the CRF-based
approach only, and “ALPS-1 (DTW+CRF))” is the the pro-
posed approach that recomputes the scores of the detections
by the baseline.

As shown in Figure 7 and Table 1, the CRF-based STD
alone did not work well comparing to the baseline approach.
In addition, our proposed approach also did not outper-
formed the baseline at the best F-measure point. However,
the combination method slightly improved the precisions in
the area of high recall range.

On the other hand, we have already evaluated our STD
engine on the different STD test collection based on the CSJ
speeches[25]. On the collection, the combination of DTW
and CRF-based approaches outperformed the baseline (same
as the ALPS-2 system)[26], and got the best performance
on max. F-measure and MAP values among all the systems
because the recall-precision curve completely improves. The
all queries of the test collection was composed of OOV terms.
However, the most queries of NTCIR-11 SpokenQuery&Doc
SQ-STD subtask consist of IV terms. Therefore, the simple
method may get better performance rather then the others
on the IV query set. In fact, the baseline result provided
by the task organizers is the 2nd best performance on the
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Table 1: STD performances for the each query run.
run micro ave. macro ave. index search

max. F [%] spec. F [%] max. F [%] spec. F [%] MAP size [MB] speed [s]

ALPS-1 63.72 61.38 57.19 56.62 0.666 713 8.125
ALPS-2 65.54 53.56 58.52 50.56 0.672 591 6.770
ALPS-3 59.86 59.86 52.94 52.61 0.553 122 0.887

same text query set among all the runs[24]. In addition, the
CRF-based triphone detection models were trained by the
transcriptions from the CSJ speeches. Therefore, there may
be some mis-matches between the training and testing data.

6. CONCLUSION
In this paper, we proposed a CRF-based re-ranking ap-

proach that recomputes the scores of the detections by the
DTW-based STD engine. The CRF model finds triphones
composed of a query term from an utterance. We used CRF-
based triphone detection models based on features gener-
ated from multiple types of phoneme-based transcriptions
that are used for making the PTN-formed index used in the
DTW-based approach. The aim of this approach is to train
recognition error patterns such as phoneme-to-phoneme con-
fusions on the CRF framework and to control the false de-
tections from the DTW approach.
In the STD experiment on the NTCIR-11 SpokenDoc&Query

SQ-STD subtask, the CRF-based approach and the re-ranking
method which combines the CRF-based and DTW-based ap-
proach could not outperform the DTW-based STD approach
by using the outputs of multiple ASR systems.
As future work, we are going to study a triphone clus-

tering approach to train CRF-based models. This approach
may solve the training data shortage problem and improve
detection accuracy of each triphone.
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