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ABSTRACT
MPI-INF participated in the Temporal Query Intent Clas-
sification Task (TQIC) of the Temporalia track at NTCIR-
11. This paper describes our approach to address this spe-
cific task. Our overall strategy has been to rely on es-
tablished off-the-shelf components (e.g., standard classifiers
from Weka and natural language processing methods from
Stanford CoreNLP) and focus on feature engineering. De-
vised features include surface (e.g., n-grams), linguistic (e.g.,
capturing whether the query is a question), and temporal
(e.g., statistics about publication dates and temporal ex-
pressions). We provide details on their precise definition
and report on their effectiveness.
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1. INTRODUCTION
Document collections are increasingly longitudinal and

contain documents published over extended periods of time.
This is a direct result of affordable storage, an increased
awareness that born-digital contents are worth keeping, and
efforts to digitize old contents published long ago. Exam-
ples of longitudinal document collections include newspaper
archives, social media, but also today’s Web, which now con-
tains web pages published decades ago. Time matters when
searching such document collections and research in tempo-
ral information retrieval [6, 9] has looked into how temporal
aspects of queries and documents can be leveraged to im-
prove retrieval effectiveness.

Temporal query intent classification, as one task in tem-
poral information retrieval pioneered by Jones and Diaz [13],
seeks to determine whether the user’s information need has
a temporal dimension. The TQIC task of NTCIR-11 Tempo-
ralia [12] takes this idea further and also aims at determin-
ing the temporal orientation of the user’s information need,
i.e., whether she is interested in information from/about the
past, present, or future. This is useful when searching longi-
tudinal document collections, for instance, to automatically

select a temporal retrieval model [7, 10, 16, 18] or inform it
about the user’s time period of interest.

The TQIC task is challenging mainly because there is lit-
tle input from users: they cast their information needs into
keyword queries, so that we are typically left with only 3-5
query keywords and the time when the query was issued.
With this brevity comes ambiguity – we could sometimes
only guess the information need behind a query and our
interpretations differed. Also, it limits the applicability of
certain methods – we found, for instance, dependency pars-
ing not to work reliably on short query strings.

When setting out to work on the TQIC task, we delib-
erately decided to focus on feature engineering and rely on
established off-the-shelf components, including Weka [4] for
machine learning and Stanford CoreNLP [1] for natural lan-
guage processing. To counter the information paucity men-
tioned above, we eagerly pull in information from other data
sources, which include the LivingKnowledge corpus and the
Open Directory Project (DMOZ). The features that we de-
vised cover a broad spectrum and include:

• surface features such as lemmatized and non-lemmatized
n-grams that are present in the query;

• lexical features derived from two lexical resources sig-
nal temporal trigger words (e.g., upcoming or recent);

• temporal features derived from publication dates of
pseudo-relevant documents as well as temporal expres-
sions from their contents;

• collection features capture the selectivity of query key-
words and how pseudo-relevant documents differ from
the general document collection;

• linguistic features indicating, for instance, whether the
query constitutes a natural language question or con-
tains a personal pronoun;

• topical features encoding the query’s broad topic in the
DMOZ topic directory.

This research has mostly been carried out as part of the
first author’s B.Sc. thesis project. More details than in this
paper can thus be found in Burghartz [8].

Outline. The rest of this paper is organized as follows.
Section 2 gives a concise overview of existing prior work. Our
overall approach is outlined in Section 3, before detailing on
devised features in Section 4. Experiments and insights from
them are the subject of Section 5. Finally, we conclude in
Section 6.
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2. RELATED WORK
We now briefly discuss the related work that we build

upon. Our focus is on query classification and retrieval mod-
els; a more complete recent survey of temporal information
retrieval is given by Campos et al. [9].

Query Classification. The most influential attempt at
temporal classification of queries comes from Jones and Diaz
[13] who classify queries into the three classes atemporal,
temporally unambiguous and temporally ambiguous. For this
task they consider the distribution of retrieved documents
over time and create meaningful features based on this dis-
tribution. Their classification is then done on this feature
set. As an example, the time distribution of retrieved doc-
uments for the query “iraq war” has distinct peaks at the
years 1991 and 2003 and is therefore classified as temporally
ambiguous, while a query like“poaching”is classified as atem-
poral since its time distribution does not exhibit any peaks.
A weakness of their approach is that only publication times
of documents are considered. Often this publication time
differs from the actual content time. Other ideas for implic-
itly temporal queries were developed by Metzler et al. [17].
By analyzing query logs they investigate the automatic de-
tection of implicitly year qualified queries, i.e., queries that
refer to an event in a specific year without containing the
year in the query string.

Retrieval Models. For explicit temporal intents, Ber-
berich et al. [7] develop an approach to find temporally rel-
evant documents if a query containing an explicit temporal
expression (as for example “2001”) was issued by the user.
An innovation of this paper is that, in contrast to former
work, it addresses uncertainty in the temporal expression.
In this context, uncertainty refers to the imprecision that
arises when there are two temporal expressions that both
refer to the same time but are slightly different, as in the
case where one is more vague than the other. Consider as
an example the aforementioned expression “2001”. This ex-
pression can refer to different time intervals: to the complete
year, to some interval of the year (e.g., April to Novem-
ber) or to some particular day (e.g., 9/11) - it depends on
the surrounding context. Now if we issue the query “new
york terrorist attacks 2001”, we are very likely especially in-
terested in documents containing the date 09/11/2001, but
this date is different from the temporal expression we used
in our search. Even though that work does not deal with
query classification, it is still related to the topic of our
work because it is one of few works which determine the
content time. Kanhabua et al. [14] follow up on this idea
and combine publication time and content time by introduc-
ing a machine learning approach that chooses one of the two
retrieval models based on what is probably most suitable for
the given query.

3. APPROACH
Our overall approach to address the TQIC task is to rely

on well-established classification algorithms, namely Näıve
Bayes and J48 Decision Trees as implemented in the Weka [4]
machine learning library and focus on feature engineering.

Most of our features make direct use of the query it-
self (e.g., its linguistic properties) or properties of pseudo-
relevant documents (e.g., publication dates and temporal
expressions) retrieved from the LivingKnowledge (LK) doc-
ument collection using a unigram language model. As ex-
ternal data sources we draw in two thesauri from the Web,

which inform us about words likely to indicate a temporal
intent and its orientation, and the Open Directory Project
(DMOZ) to determine the overall topic of the query. More
details about the individual features are provided in the fol-
lowing Section 4.

4. FEATURE DESIGN
In this section, which forms the core of the paper, we

provide details on the different features that we devised.

4.1 Surface Features
As a set of baseline features, we employ non-lemmatized

and lemmatized unigrams and bigrams that occur in the
training data. Lemmatization was performed using Stanford
CoreNLP [1]. For unigrams, we keep all non-lemmatized and
lemmatized ones and only filter out stopwords (e.g., of and
and). For bigrams, we keep all non-lemmatized and lem-
matized ones (including those that contain a stopword) but
filter out bigrams corresponding to a temporal expression.
Considering bigrams allows us to capture compounds such
as exchange rate; including stopwords informs us about com-
mon phrases such as how to, which is likely to indicate an
atemporal query. In total, we end up with 330 distinct sur-
face features.

4.2 Lexical Features
We leverage two online thesauri [2, 3] to identify temporal

trigger words, i.e., words that are strong indicators that a
query falls into one of the categories past, recent, or future.
To do so, we identify words listed as words related to past,
recent, and future in the two lexical resources. Table 1 shows
a subset of the temporal trigger words thus identified. We
encode the presence of one of these temporal trigger words
through the binary features containsPastTrigger, con-
tainsRecencyTrigger, and containsFutureTrigger.

past recent future
history topical prediction
ago trendy upcoming
past recent future

Table 1: Temporal trigger words

4.3 Temporal Features
Documents come with two kinds of temporal information,

namely their publication dates and temporal expressions in
their contents. We now describe features that leverage these
two dimensions of publication time and content time.

Publication Time
We adopt the idea from Jones and Diaz [13] to construct
a probability distribution from pseudo-relevant documents’
publication dates. To determine the set R of pseudo-relevant
documents, with |R| = 200 in all our experiments, we em-
ploy a unigram language model with Dirichlet smoothing [19]
(with µ = 1000) and let P (q|d) denote the likelihood of gen-
erating the query q from document d. The publication time
distribution (ptd) for a query q is then defined as

Ppub (t | q) =
∑
d∈R

P (t | d) · P (q | d)∑
d′∈R P (q | d′) .
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(a) weather forecast
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Figure 1: Publication time distributions

Here, t is a timestamp at day granularity and we define

P (t | d) =

{
1, if t is the publication date of d

0, otherwise
.

Intuitively, this definition puts high probability on days when
many highly-relevant documents were published. In prac-
tice, we smooth the publication time distribution using a
sliding window of seven days.

Figure 1 illustrates the publication time distributions for
the queries weather forecast and occupy wall street. We can
see that the distribution for the query weather forecast does
not exhibit any significant peaks; smaller peaks occur due
to natural fluctuations in publication volume. In contrast,
the publication time distribution for the query occupy wall
street exhibits peaks, which coincide with important events
for the Occupy Wall Street protest movement.

We can now use statistical measures to derive features that
characterize these publication time distributions. We adopt
the features temporalKL and temporalKurtosis from
Jones and Diaz [13]. The former is the Kullback-Leibler Di-
vergence between the publication time distribution Ppub(t|q)
and a background publication time distribution Ppub(t|D)
for the entire document collection D. Here, Ppub(t|D) is the
probability that a randomly drawn document from the col-
lection was published on day t. The latter is the kurtosis
of the publication time distribution Ppub(t|q). Intuitively,
these two features capture how constantly relevant docu-
ments have been published and how much the publication
time distribution for the query deviates from the background
distribution. We expect these features to be useful in decid-
ing whether a query is atemporal or not but not in distin-
guishing between the past, recent, and future categories. We
do not adopt the autocorrelation feature proposed in [13],
since the document collection at hand spans only two years
and we thus do not expect to see periodic behavior.

Content Time
From the temporal expressions contained in pseudo-relevant
documents we construct a content time distribution (ctd).
One advantage of the content time distribution is that it
is not bound to the time period covered by the document
collection, but can also inform us about important events in

the further past or future. Given again a set R of pseudo-
relevant documents with their query likelihoods P (q|d), we
define the content time distribution as

Pcon (t | q) =

∑
d∈R

∑
te∈TE(d) P (t | te) · P (q | d)∑

d∈R

∑
te∈TE(d) P (q | d)

.

Here, TE(d) denotes the set of temporal expressions con-
tained in document d. Each temporal expression te is mapped
to a time interval [b, e] at day granularity (e.g., June 2014 is
mapped to [2014/06/01, 2014/06/30]) and we define

P (t|[b, e]) =

{
1/|[b, e]|, if t ∈ [b, e]

0, otherwise

assigning uniform probability to all days in the time interval.
Note that this can be seen as a simplified variant of the
model proposed by Berberich et al. [7].

Figure 2 displays the content time distributions for the
queries weather forecast and moon landing. As for publica-
tion time, the former query does not exhibit any peaks or
irregularities. The latter query, in contrast, shows distinc-
tive peaks at important relevant time points. These include
the first moon landing on July 20 1969, thereby pre-dating
the document collection by more than four decades, but also
more recent relevant events such as the launch of Voyager 1
on August 25 2012.

To characterize the content time distribution relative to
the query issuing time, we devise several features. As a first
group of features, we determine the 10%, 25%, 50%, and
75% percentiles of the distribution and encode their distance
in days (possibly a negative number) to the query issuing
time. These are referred to as ctQuantile10, ctQuan-
tile25, ctQuantile50, ctQuantile75. Complementary to
that, we define three features ctWeightOnPast, ctWeight-
OnRecent, and ctWeightOnFuture, which reflect how
much probability mass falls before, onto, and after the query
issuing date. Finally, we also record in a feature ctWeight-
OnCollectionPast how much probability mass falls before
the time period covered by the LK document collection.

Publication + Content Time
Until now, we have considered publication dates and tem-
poral expressions only in isolation, which ignores how the
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Figure 2: Content time distributions

temporal expressions in documents relate to their publica-
tion dates. Consider the query weather forecast as a concrete
example. As we have seen in Figures 1 and 2, publication
dates and temporal expressions do not exhibit any interest-
ing behavior, suggesting that the query should be classified
as atemporal. To classify the query correctly as future, we
propose to look into how temporal expressions in pseudo-
relevant documents are positioned relative to their publi-
cation date. Intuitively, for the query weather forecast, we
expect to see many temporal expressions (e.g., tomorrow or
next week) that lie in the future relative to the forecasting
document’s publication date. As a stepping stone, we define
three weights for a temporal expressions [b, e] and a publica-
tion date td reflecting how much of the temporal expression
lies in the past, present, or future relative to the publication
date, formally

wp([b, e], td) = λ · |[b, td]| · 1(td ∈ [b, e])

|[b, e]| + (1−λ) ·1(e < td)

wr([b, e], td) = λ · 1(td ∈ [b, e])

|[b, e]| + (1− λ) · 1(td ∈ [b, e])

wf ([b, e], td) = λ · [td, e] · 1(td ∈ [b, e])

|[b, e]| + (1− λ) · 1(b > td)

with λ as a tunable parameter, which we set as λ = 0.75 in
our experiments. Aggregating again over all pseudo-relevant
documents, we define three features relPastScore, relRe-
cencyScore, relFutureScore as follows

relPastScore(q) =

∑
d∈R P (q|d)

∑
[b, e]∈TE(d) wp([b, e], t)∑

d∈R

∑
[b, e]∈TE(d) P (q|d)

;

relRecencyScore(q) =

∑
d∈R P (q|d)

∑
[b, e]∈TE(d) wr([b, e], t)∑

d∈R

∑
[b, e]∈TE(d) P (q|d)

;

relFutureScore(q) =

∑
d∈R P (q|d)

∑
[b, e]∈TE(d) wf ([b, e], t)∑

d∈R

∑
[b, e]∈TE(d) P (q|d)

.

Events
One of the most difficult types of queries are those which
refer to recurrent events, for instance, french open 2013 dates.

In order to resolve the event to an exact date and position
it relative to the query issuing time, one would need domain
knowledge about when the event usually takes place.

We present an approach which focuses on recurrent event
queries and tries to resolve them to a precise date, with-
out using any domain knowledge. The general idea is to
again leverage publication dates and temporal expressions
of pseudo-relevant documents, but build distributions over
days of the year. Building on our above definitions of Ppub(t|q)
and Pcon(t|q), we define

Ppub days (i | q) =
∑
t

isAtDay (t, i) · Ppub (t | q)

Pcon days (i | q) =
∑
t

isAtDay (t, i) · Pcon (t | q)

with i ∈ [1, 365] as a day of the year and isAtDay(t, i) indi-
cating whether the date t was the i-th day of the year. We
further combine the two distributions above as

Pdays(t|q) = 0.5 · Ppub days(t|q) + 0.5 · Pcon days(t|q) .

 0

 0.05

 0.1

 0.15

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
(t

|q
)

ctd

ptd

Figure 3: Distributions over days for the query
french open derived from publication dates (ptd) and
temporal expressions (ctd)
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To illustrate this idea, Figure 3 shows the distributions
obtained from publication dates and temporal expressions
for the query french open. Both curves have clear peaks and
we can estimate the approximate date of the event. In fact,
the French Open tournament takes place from late May un-
til early June. Note that the publication time curve shows
clearer peaks; this is because publication dates always cor-
respond to a specific day; in contrast, in the content time
method we often add weights to many days at once due to
the uncertainty of temporal expressions.

When given a year-qualified query (e.g., french open 2014),
we use the above distribution Pdays(i|q) to determine the
likely date of the event and its relative position to the query
issuing time. First, we remove the year (e.g., 2014) from the
query and determine the corresponding distribution Pdays(i|q).
Second, we inspect the distribution and determine the day
of the year i having maximal probability. If its probability
exceeds 0.05, we assume the date of the event as the day
i within the year given in the query. We encode whether
this day lies in the past or future relative to the query issu-
ing time using two binary features lkPastEvent and lkFu-
tureEvent. In addition, we keep a feature lkRecentEvent
that records the ratio Pdays(j|q)/Pdays(i|q) where i is the de-
termined day of the year for the event and j is the day of
the query issuing time.

Temporal Dictionary
Our last set of temporal features captures for individual
query keywords whether they tend to co-occur in documents
together with temporal expressions referring to the past,
present, or future. This idea is akin to the approach de-
scribed by Jatowt et al. [11]. We construct a temporal dic-
tionary from the LK document collection, which records for
every word w four scores

• dictPastScore(w) as the fraction of sentences contain-
ing w that also contain a temporal expression which
refers to the past relative to the document’s publica-
tion date;

• dictRecencyScore(w) as the fraction of sentences con-
taining w that also contain a temporal expression which
refers to the document’s publication date;

• dictFutureScore(w) as the fraction of sentences con-
taining w that also contain a temporal expression which
refers to the future relative to the document’s publica-
tion date;

• avgTimex (w) as the average number of temporal ex-
pressions co-occurring with w in a sentence.

When given a query q, we look up these scores for every
word w ∈ q and keep the average and maximum as features
(e.g., avgDictPastScore and maxDictPastScore for the
first score).

4.4 Linguistic Features
Every query is run through Stanford CoreNLP [1] to per-

form part-of-speech (POS) tagging, named entity recogni-
tion (NER), and detect temporal expressions. From the re-
sulting annotations, we derive a set of linguistic features,
which we describe now in more detail.

POS Features. We define the following features based
on the query’s sequence of POS tags:

• startsWithNoun corresponds to the regular expres-
sion (DT )?NN(S)? (.)* and indicates whether the query
starts with a noun;

• startsWithInflectedVerb signals whether the query
starts with an inflected verb corresponding to the POS
tags VBD, VBP, or VBZ;

• startsWithNonInflectedVerb indicates whether the
query starts with a non-inflected verb corresponding
to the POS tags VB or VBG. We hypothesize that non-
inflected verbs tend to indicate atemporal queries (e.g.,
lose weight quickly);

• containsPersonalPronoun signals whether the query
contains a personal pronoun such as I, you, or we but
not it, which we observe based on the POS tag PRP;

• startsWithWh reflects whether the query starts with
one of the POS tags WP, WP$, or WRB. Queries that start
with such as wh-pronoun are often questions.

Named Entities. Based on the named entities detected
we introduce three features. The first two, containsEntity
and isEntity, indicate whether the query contains or cor-
responds in its entirety to a named entity belonging to the
types Person, Organization, Location, or Misc. The third
feature containsDuration indicates whether an entity of
type Duration occurs. We contemplated creating more fine-
grained features (e.g., containsPerson, containsOrgani-
zation, and containsLocation), but discarded this idea
due to the limited amount of training data and the danger
of overfitting.

Tense. Part-of-speech tagging also informs us about the
tenses of verbs in the query. We encode those in three binary
features containsPastTense, containsPresentTense, and
containsFutureTense.

Temporal Expressions. We also make use of temporal
expressions found in the query by the SUTime component
of Stanford CoreNLP. More precisely, we determine a time
interval from the value attributes of returned TIMEX3 tags
and encode their relative position to the query issuing time
in the features containsPastDate and containsFuture-
Date. Two additional features provide more information
when the query issue time falls inside the determined time
interval. The first one, recentIntervalSize, encodes the
size of the time interval in days (e.g., 30 for June 2014) and
is otherwise set to a large constant. The second one, sec-
tionOfInterval, encodes the position of the query issuing
time within the determined time interval. For instance, for
a query issued on June 10th 2014 which contains June 2014,
this feature assumes the value 0.33. Finally, we leverage a
list of common holidays and introduce a feature contain-
sHoliday. This feature reflects whether the query mentions
a non-year-qualified holiday that does not occur within the
next 100 days. The value of 100 is chosen arbitrarily, but
we think it is important to somehow express the difference
between imminent holidays and holidays that are further
away.

4.5 Topical Features
Often, queries which look very similar can end up in dif-

ferent temporal classes. As a concrete example, consider the
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queries number of neck muscles and number of millionaires in
usa. While the former is clearly atemporal, the latter should
be classified as recent. With enough training data our sur-
face features will be able to handle such cases, for instance,
by picking up neck muscles as a cue for a health-related query
which is likely to be atemporal. As a workaround, for our
limited training data, we introduce features that seek to cap-
ture the broad topic of the query. To this end, we make use
of the Open Directory Project (DMOZ) [5], which is the
largest human-edited directory on the Web. We issue the
query against DMOZ and analyze the top-level categories
(e.g., Arts, Business, or Sports) of the top-20 web pages
returned. We take the majority top-level category, with ties
broken according to lexicographic order, as the category of
the query and keep it as a single feature dmozTopic.

4.6 Other Features
To capture the selectivity of query keywords, we introduce

three additional features, namely (i) minIDF, (ii) avgIDF,
and (iii) maxIDF corresponding to the minimum, average,
and maximum inverse document frequency of any query key-
word. In addition, we introduce a feature resultRelevance,
which is defined as the sum of query likelihoods of result
documents in R. Finally, as another characterization of the
query result, we keep track of the average number of tempo-
ral expressions per result document in a feature avgTimex.

5. EXPERIMENTS
We now describe our experimental evaluation and its re-

sults. Section 5.1 describes our insights regarding features
effectiveness obtained on the training data. The feature sets
used for our formal run submissions are listed in Section 5.2.

5.1 Cross Validation
As a first baseline, which our methods have to outperform,

we consider a majority classifier. Given that the training
data is perfectly balanced, with all classes occurring with
probability 25%, this is equivalent to a uniform random clas-
sifier, and achieves an accuracy of 25%. Our second baseline
is a text-only classifier, which only relies on the n-gram fea-
tures described in Section 4.1.

To assess the overall effectiveness of the different feature
groups, we conducted four experiments. Accuracies in each
of these experiments are estimated using 50 runs of 10-fold
cross validation.

We divided our features into seven sets. The set surface
contains the n-gram features described in Section 4.1. The
temporal trigger words described in Section 4.2 go into a fea-
ture set lexical. A third feature set distribution contains
the features related to distributions of publication dates and
temporal expressions, described in Section 4.3, as well as the
other features described in Section 4.6. The features related
to events and our temporal dictionary are kept separate and
in their own respective feature sets event and dictionary.
The linguisitc features are contained in the set nlp. The
DMOZ topic feature described in Section 4.5, finally, goes
into its own feature set topical.

Experiment 1 considers the feature sets in isolation and
determines their effectiveness when used alone. We ran an
exhaustive feature selection on each set, considering all pos-
sible subsets of features, and report the obtained accuracy
estimates in Table 2.

Experiment 2 studies how much we can gain in accuracy

Naı̈veBayes J48

surface (baseline) 56.30 42.20
majority class (baseline) 25.00 25.00

lexical 37.50 37.15
distribution 50.93 57.08
event 44.98 41.63
dictionary 58.05 53.28
nlp 53.68 57.35
topical 35.45 35.45

Table 2: Accuracy estimates of feature sets in isola-
tion (Experiment 1)

by using any of our seven feature sets on-top of the base-
line surface features. Table 3 lists the resulting accuracy
estimates.

Naı̈veBayes J48

surface (baseline) 56.30 42.20
majority class (baseline) 25.00 25.00

surface + lexical 61.83 46.33
surface + distribution 63.00 49.83
surface + event 65.08 55.68
surface + dictionary 67.88 48.75
surface + nlp 74.38 57.95
surface + topical 57.00 44.03

Table 3: Accuracy estimates of feature sets when
used on-top of surface (Experiment 2)

Experiment 3 examines the accuracy of the two classi-
fiers when using all selected features from Experiment 1,
including the baseline features. It also analyzes how the per-
formance changes when any of the feature sets is removed.
Table 4 shows the results.

Naı̈veBayes J48

surface (baseline) 56.30 42.20
majority class (baseline) 25.00 25.00

all selected features 74.98 61.30

all selected - distribution 75.45 62.08
all selected - nlp 68.50 51.23
all selected - topical 74.75 57.88
all selected - lexical 73.63 57.20
all selected - dictionary 73.13 63.85
all selected - event 73.65 62.73
all selected - surface 62.88 55.15

Table 4: Accuracy estimates when removing indi-
vidual feature sets (Experiment 3)

Experiment 4, instead of combining the features selected
for each feature set in isolation for Experiment 1, considers
all features described in this work. Considering all subsets
of features for feature selection is clearly prohibitively ex-
pensive. We therefore take the surface features again as
a baseline and use simulated annealing [15] to select from
the additional features. In each iteration of simulated an-
nealing, a randomly selected feature is turned on/off and we
estimate the accuracy of the resulting feature set. Simulated
annealing accepts the new feature set if the accuracy has im-
proved. Otherwise, if the accuracy has dropped, it accepts it
with a probability that depends on the decrease in accuracy
and the iteration. In later iterations, it is thus less likely to
accept decreases in accuracy. While the algorithm will often
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find a global optimum, it may end up in a local optimum.
Table 5 gives the accuracies of the resulting feature set (all
selected features) and also reports how accuracy changes
when we remove one of our seven feature sets.

Naı̈veBayes J48

surface (baseline) 56.30 42.20
majority class (baseline) 25.00 25.00

all selected features 85.28 72.35

all selected - distribution 77.45 64.78
all selected - nlp 70.53 47.88
all selected - topical (85.28) (72.35)
all selected - lexical 82.75 65.8
all selected - dictionary 71.65 (72.35)
all selected - event (85.28) (72.35)
all selected - surface 63.25 58.90

Table 5: Accuracy estimates obtained when remov-
ing individual feature sets (Experiment 4)

Discussion
The first thing that we notice is that our estimates are much
stronger than the accuracies obtained on the formal runs.
This is most pronounced in the fourth experiment, where we
reach an accuracy of over 80%. We believe that we are fac-
ing overfitting problems. Even with k -fold cross-validation,
one cannot avoid this, especially if the training set is rather
small, which (having only 80 training queries at hand) is ob-
viously the case. On a small training set, some bad features
might seemingly correlate with the class attribute and thus
have a big influence in the final classifier. Because we have
designed a large number of features and tried to find ap-
propriate subsets via feature selection, the chance that the
chosen subset contains overestimated features is high. This
is not really a problem of our experimental setup, though,
as there is no systematic way to overcome these overfitting
issues. We cannot recognize features that correlate with the
class attribute by pure chance, except by human interven-
tion, which is obviously not available to a learning algorithm.

We can also see that the n-gram features (surface) are ca-
pable of correctly classifying over 50% of the queries, which
is not at all what one would expect. We question whether
this is a representative result and doubt that, in practice,
one could achieve such good accuracy by only considering
unigrams and bigrams, especially when learning on such a
small training set.

Nevertheless, we can detect certain trends in the results.
We notice that the linguistic features are especially effec-
tive in this task. In each of our four experiments, they are
among the best performers and their removal always leads
to a significant decrease in accuracy.

Our event resolution approach, represented by the feature
set event, shows a surprisingly good performance. The ac-
curacy estimate of 44.98% (41.63%) in Experiment 1 might
not appear overwhelming, especially in comparison to the
other estimates. However, one has to bear in mind that
the event resolution only extracts non-zero feature values
for queries which contain a year expression and which are
assumed to actually contain an event. Only 23 of the 80
queries contain a year expression, so the features only take
a non-zero value for a small fraction of the training set. Thus
the result of 44.98% (41.63%) is very satisfying and demon-
strates that distributions of publication dates and temporal

expressions can successfully be used to detect events.
Another surprise is the result of our temporal dictionary

feature set. It achieves better accuracy than the n-gram fea-
tures (with just two selected features) and without the need
to learn particular n-grams. All in all, those two features
are enough to correctly classify almost 60% of the queries -
this is a huge finding, which confirms that many words do
have inherent temporal semantics.

The features that we obtained from looking at the dis-
tributions of publication dates and temporal expressions of
pseudo-relevant documents also achieve good accuracy, yet
they did not perform quite as well as we had hoped. It seems
like temporal expressions from retrieved documents are only
partially connected to the temporal intent behind the query
that was issued; one could attempt to narrow the context of
the query terms down to sentences instead of entire docu-
ments, i.e., only temporal expressions that occur in the same
sentence as one of the query terms would be retrieved, which
might make the distributions more accurate. This is basi-
cally what we successfully did in our dictionary approach.
However, in the dictionary approach, we only tried to relate
terms to the past, the present, and the future, respectively.
It is still necessary to link certain n-grams to absolute times,
such that, for example, the relevant time of the expression
belmont stakes can simply be looked up in a dictionary. Un-
fortunately, a first attempt at realizing such a dictionary of
absolute times (not described in this paper) failed and no
improvements could be observed. We still think extending
the temporal dictionary approach is one of the most promis-
ing approaches for future work.

5.2 Formal Run
We now list the features that we chose for our three formal

runs. All of the runs used the Näıve Bayes classifier as this
classifier outperformed the decision tree in our experiments
on the training data. The features from Run 1 and Run 3
were chosen via a simulated annealing algorithm for feature
selection (because the algorithm works probabilistically and
does not find the global optimum, the selected features for
both runs are different). In contrast, for Run 2 we manually
assembled different features that we thought might comple-
ment each other well – of course without looking at the test
data. Table 6 presents the features selected this way. In ad-
dition to these features, each selected feature subset always
contains all n-gram features.

Run 1 Run 2 Run 3

future 0.65 0.71 0.63
atemporal 0.73 0.76 0.80

past 0.53 0.60 0.60
recent 0.57 0.49 0.44
overall 62.33 64.00 61.67

Table 7: Performance of formal runs

Table 7 provides details on the performance of our three
runs, as reported by the organizers. Indeed, Run 2 with its
manually selected features performs slightly better than the
other two runs. We can see that our runs do a good job at
deciding whether a query is atemporal (with precision values
consistently above 70%) or future (with precision values still
above 60%). Their performance is worst when detecting
recent query (no precision value above 60%). Given that
we used off-the-shelf classifiers (Näıve Bayes for our formal
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Run 1 Run 2 Run 3

maxDictPastScore avgDictPastScore avgDictRecencyScore
maxDictRecencyScore avgDictRecencyScore maxDictFutureScore
avgDictTemporality avgDictTemporality lkRecentEvent
lkRecentEvent lkRecentEvent containsPastTrigger
lkFutureEvent lkFutureEvent containsFutureTrigger
containsPastTrigger avgTimex ctQuantile10
containsFutureTrigger avgIDF ctQuantile50
ctQuantile10 containsPastTense avgTimex
ctQuantile75 containsPresentTense ctWeightOnPast
avgIDF containsFutureTense maxIDF
maxIDF containsPastDate temporalKL
resultRelevance recentIntervalSize containsPastDate
containsPastTense containsFutureDate sectionOfInterval
containsPresentTense containsHoliday containsEntity
containsPastDate dmozTopic isEntity
recentIntervalSize startsWithNoun
containsFutureDate startsWithNonInflectedVerb
containsHoliday containsPersonalPronoun
containsEntity dmozTopic
startsWithNonInflectedVerb
containsPersonalPronoun

Table 6: Selected features for the three formal runs

runs) and focused on feature engineering, we regard this a
positive result.

6. CONCLUSIONS
In this paper, we have laid out an approach to tackle the

TQIC task of NTCIR-11 Temporalia [12]. Relying on es-
tablished off-the-shelf components (Stanford CoreNLP for
natural language processing and Weka for machine learn-
ing), we focused on finding effective features for the task
at hand. We found that simple n-gram features go a long
way and form a strong baseline. Among our devised fea-
tures, we found linguistic features (e.g., capturing whether
the query corresponds to a question) and event-related fea-
tures, which try to guess the date of an event mentioned in
the query, most effective. As part of our future research, we
plan to further investigate the substantial gap in accuracy
estimates obtained on the training data and the formal runs
and assess the effectiveness of our features on different query
workloads or other query classification tasks.
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