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ABSTRACT
This paper details our participation in the NTCIR-11 Tem-
poralia task including Temporal Query Intent Classification
(TQIC) and Temporal Information Retrieval (TIR). In the
TQIC subtask, we explore the rich temporal information in
the labeled and unlabeled search queries. Semi-supervised
and supervised linear classifiers are learned to predict the
temporal classes for each search query. In the TIR sub-
task, we perform temporal ranking based on the technique
of learning-to-rank. Two classes of features are investigated
for estimating the document relevance.
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Keywords
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1. INTRODUCTION
The TUTA1 group at The University of Tokushima partic-

ipated in both subtasks of the NTCIR-11 Temporalia task,
i.e., the Temporal Query Intent Classification (TQIC) sub-
task and the Temporal Information Retrieval (TIR) subtask.
For detailed introductory information of each subtask, please
refer to the task design paper [4] and the overview paper [5].
Both subtasks focus on the identification of temporal in-
formation across the “past”, “recent”, “future”, and “atem-
poral” categories for information retrieval. In the TQIC
subtask, both search queries and query submission dates
have been provided for predicting the users’ temporal in-
tents. Because the query strings are usually very short, e.g.
4.2 words in dry-run on average, to find useful temporal fea-
tures in queries and to explore the background information
(especially for named entities) seem to be prominent in this
subtask. For those search queries with explicit temporal ex-
pression or predicate verbs, we extract the “time gap” and
“verb tense” features, separately. We also investigate the

∗These authors contributed equally to this work. Xin Kang
is mainly responsible for the TQIC subtask; Hai-Tao Yu is
mainly responsible for the TIR subtask.

word lemmas and named entities in search queries, which
are very sparse but count the majority of the query contents.
As an external resource, the AOL 500K User Session Col-
lection1[8] has been employed to further expand our knowl-
edge of temporal features from the background, through a
semi-supervised learning model. In the TIR subtask, we ex-
periment with the learning-to-rank technique for temporal
ranking. Based on the state-of-the-art algorithms for learn-
ing ranking models, we mainly focus on feature selection.

In the remainder of this paper, we outline the notations,
the methods for intermediate natural language parsing in
§2. §3 and §4 detail the approaches proposed for TQIC and
TIR subtasks respectively. We conclude our work in §5.

2. PRELIMINARIES
In this section, we first outline the notations used through-

out this paper, then the mechanisms we designed for inter-
mediate document parsing are introduced.

The document collection“LivingKnowledge news and blogs
annotated subcollection” released in Temporalia task is de-
noted as D = {d1, ..., dn}. d denotes an annotated doc-
ument. The meta-info of a document includes its unique
identifier, host name where the document page was pulled
from, date when the page was published, url where the doc-
ument page was pulled from, source css that was accessed
to retrieve the page, and title of document page. A docu-
ment d is represented as a sequence of annotated sentences,
i.e., d = {se1, ..., sem}. The named entities and temporal
expressions in a sentence are annotated. Correspondingly, d
and se respectively denote the document and sentence, from
which the tags of named entities and temporal expressions
are removed.

In context of Temporal Query Intent Classification (TQIC)
subtask, τ denotes a temporal class, “P”, “R”, “F”, and “A”
are the abbreviations for past, recent, future, and atempo-
ral respectively. In context of the TIR subtask, t denotes a
topic, st denotes a subtopic, stStr denotes a subtopic string,
tit(t) and des(t) denote the title and description of a topic
respectively. For both subtasks TQIC and TIR, we use the
concept of search query to refer to the input string that
is used to perform retrieval. For the subtask of TIR, the
Stanford CoreNLP2 (version 3.3.1) is used to perform part-
of-speech (POS) tagging. To determine the tense of a sen-
tence, we make use of the verb’s POS tag. Specifically, the
tag “VBD” is used to identify past tense, the tags “VBP”,

1http://www.gregsadetsky.com/aol-data/
2http://www-nlp.stanford.edu/software/corenlp.shtml
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“VBZ” and “MD” are used to identify non-past tense. For a
tagged token, it will be regarded as a noun term if its POS
tag begins with “N” or “n”.

3. TEMPORAL QUERY INTENT CLASSI-
FICATION

Temporal Query Intent Classification (TQIC) subtask chal-
lenges text classification in two aspects: to recognize tempo-
ral features in search queries, and to explore the background
information in these queries. In this section, we describe the
temporal information extraction for search queries, and illus-
trate the learning of supervised and semi-supervised classi-
fiers, based on the labeled and unlabeled training examples,
for Temporal Query Intent Classification (TQIC).

3.1 Temporal feature extraction for TQIC
1. Time Gap Features. The ideal temporal features in

a query string should indicate the gap between the intended
time point in the search query and the query submission
time, in which case the Temporal Query Intent Classification
problem falls back to evaluating this time gap. For example,
a particular month of a year as in“June 2013 movie releases”
becomes a strong indicator of the “future” class given the
query submitting date of “May 28, 2013 GMT+0”.

The time gap features are represented as “DIFF past” and
“DIFF future”, depending on the relative difference between
the query submission time points and the intended query
time points. We employ the SUTIME library[2] in Stanford
CoreNLP pipeline to recognize and normalize the temporal
expressions in search queries. For example, a particular date
“June 2013” is normalized as “2013-06”, while a less particu-
lar date “2013 winter” is normalized as a season “2013-WI”.
Time gaps are acquired by directly comparing the normal-
ized time and the query submission time. Besides, some
temporal expression which indicates the time offsets could
also be properly recognized. For example, “5 years from now
on” and “last week” are recognized as “OFFSET P5Y” and
“THIS P1W OFFSET P-1W”, indicating a 5 years offset in
the future (5Y) and a 1 week offset in the past (-1W).

However, the time gap features are rare in search queries.
Within 100 dry-run search query samples, we extracted 7
temporal features indicating the “past” time point and 5 in-
dicating the“future”time point, and within 3.1M AOL query
samples, we extracted 4.8K such “past” features and 0.6K
such “future” features. And in some cases, the time gap fea-
tures turn less indicative when the recognized time overlaps
the query submission time. For example, in the search query
“comet coming in 2013”, the recognized year 2013 does not
indicate a meaningful time gap relative to the query submit-
ting data “Oct 28, 2013 GMT+0”. We represent these time
gap features as “DIFF same year”, “DIFF same month”, or
“DIFF same day”, to indicate that the recognized time points
and the query submission time are within the same period.

2. Verb Tense Features. Another important temporal
feature in search queries is the verb tense. For example, the
verb “was” in “Who Was the Youngest President” turns to
be a strong indicator of the “past” intension.

We employ the Stanford POS tagger library[12] in Stan-
ford CoreNLP pipeline, which uses the Penn Treebank tag
set [7], to recognize verbs and to distinguish their tenses
in the search queries. Verb tenses represented by the Penn
Treebank tag set include the past tense (VBD), the singular

present tense (VBZ/VBP for 3rd person/non-3rd person),
the present participle (VBG), the past participle (VBN),
and the base form (VB). Because the 3rd and non-3rd per-
son verb forms make little difference to temporal classifica-
tion, we represent the present tense as VBZ for both verb
forms. In our temporal feature recognition, the verb tense
features are represented by the combination of the part-of-
speech tag and the verb lemma. For example, “was” in the
previous search query is represented as “VBD be”, implying
the “past” temporal intent.

In a search query, there could be multiple verbs with dif-
ferent verb tenses. For example, in the query “an experience
that you enjoyed while learning something new”, we get 2
verb tense features “VBD enjoy” and “VBG learn”. These
verb tense features are not equally important in determin-
ing the temporal class of a search query. In most cases,
we can perform a meaningful syntactic parsing to a search
query, by using the Stanford Parser library[11] in Stanford
CoreNLP pipeline, and find the main predicate by picking
the uppermost verb in the parse tree. The tense of the main
predicate (uppermost verb) then determines the tense of the
whole search query, and therefore implies the temporal in-
tent of the search query. In our temporal feature recognition,
we use the Uppermost Verb Tense “UVT VB*” to represent
the tense of the entire search query. Lemmas of the up-
permost verbs are not attached to make this feature more
distinguishable in a linear classifier. In this example, the
uppermost verb tense feature is “UVT VBD”, which indi-
cates the “past” class for the search query. Within 100 dry-
run search queries, we extract 28 UVT features, and within
3.1M unlabeled search query samples, we extract 664K UVT
features.

3. Lemmas and Named Entities. For search queries
without indicative temporal expressions or verb tense in-
formation, words and recognized named entities could also
indicate the temporal intents. For example, the word “his-
tory” in search query “history of slavery” indicates a query
of the “past” events, and the recognized person name “Yuri
Gagarin” in search query “Yuri Gagarin Cause of Death”
suggests a “past” query if we possess the background infor-
mation about this person, e.g. Yuri Gagarin is a historical
people.

We employ the Stanford Named Entity Recognizer[3] in
Stanford CoreNLP pipeline to recognize the named entities
in search queries. Unlike the time gap and verb tense fea-
tures, words and named entities count the majority of search
query texts. The number of distinct word and named en-
tity features is much bigger than the number of time gap
and verb tense features, and these features are also much
sparser in the search queries. We use word lemma instead
of raw words to make these feature less sparse. However,
to understand the meanings in lemmas and named entities
or to reconstruct their functions in predicting the temporal
intents in search queries, could still be difficult with limited
resources.

To expand our knowledge in existing temporal features
within a small number of labeled examples to the unknown
features in other unlabeled examples, we employ a semi-
supervised Support Vector Machine classifier SVMlin3. For
a detailed description of SVMlin, please refer to [9, 10]. We
explore the lemma and named entity features as well as the

3http://vikas.sindhwani.org/svmlin.html
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time gap and verb tense features in the raw search queries
from AOL 500K User Session Collection[8].

3.2 Experiments

3.2.1 Experimental Setup
The Temporal Query Intent Classification (TQIC) sub-

task provides a dry-run dataset of 100 search query sam-
ples for developing the temporal classification models, and
a formal-run dataset of 300 search query samples for exam-
ining the results. Both datasets comprise 4 fields, includ-
ing an “id” for each query example, a “query string” of the
text content, a “query issue time” recording the query sub-
mission date in the form of “Month Day, Year GMT+0”,
and a “temporal class” representing the temporal intent of
a query, consisting of “past”, “recent”, “future”, and “atem-
poral”. Because the “temporal class” field for last 20 search
query examples in the dry-run dataset was empty, we only
use the first 80 examples in our experiment.

Besides, the AOL 500K user Session Collection [8] has
been employed as the extra unlabeled training corpus for
feeding the semi-supervised SVM classifier. Totally 5 fields
are recorded in this dataset, including“AnonID”as an anony-
mous user ID,“Query”as the query text,“QueryTime”as the
submission time in the “YYYY-MM-DD hh:mm:ss” format,
“ItemRank” and “ClickURL” which record the user clicks (if
any) in the search sessions. From 36M search query samples
in the AOL dataset, we choose those samples which con-
sist of at least 3 words in the query text and at the same
time have been clicked (“ItemRand” and “ClickURL” are not
empty) during the search session. The filtered AOL dataset
contains 3.1M unique search queries, with the “Query” and
“QueryTime” fields extracted, which are analogous to the
“query string” and “query issue time” fields in the TQIC
datasets.

Features described in Section 3.1 are extracted for both
the TQIC dataset and the AOL dataset. We build two fea-
ture lists, based on the 80 labeled search query examples in
dry-run and the queries in both dry-run and AOL, for the
supervised and semi-supervised training respectively.

To learn the supervised models for TQIC, we employ the
Logistic Regression Classifier in the scikit-learn 0.15.04, which
is a machine learning package in Python. Model parameters
“C” and “penalty” are selected through a 5-fold cross vali-
dation on 80 labeled training examples. We use the over-
all Precision, which counts the proportion of search queries
with correctly predicted temporal labels among the valida-
tion set, to evaluate the model performance. To further ex-
plore the lemma and named entity features for TQIC with
large amount of unlabeled query samples, we employ the
SVMlin package[9, 10], which implements the linear SVM
classifier with the semi-supervised extension. Rather than
utilizing all the unlabeled samples in AOL dataset for semi-
supervised training, we randomly choose a specified number
(N) of search queries from AOL, and combine them with
the labeled examples in the TQIC training set to learn a
classifier. The SVMlin model parameters5 A, W , U , R, and
the unlabeled query amount N for semi-supervised training
are selected through a 5-fold cross-validation, based on the

4http://scikit-learn.org/stable/index.html
5A for SVM algorithm selection, W and U specify the regu-
larization parameters λ and λu respectively, R specifies the
positive class fraction in unlabeled data.

overall Precision scores.

3.2.2 Temporal Query Intent Classification Runs
We submitted 3 runs for the TQIC subtask. To examine

the effectiveness of the time gap and verb tense features in
TQIC, we add a 4th run as the baseline:

• TUTA1-TQIC-RUN-1. Temporal labels are predicted
by a Logistic Regression classifier, trained on the 80
labeled search query examples in the dry-run dataset,
based on all temporal features introduced in Section
3.1. Model parameters C = 30, and penalty = l1 have
been selected through a 5-fold cross-validation.

• TUTA1-TQIC-RUN-2. Temporal labels are predicted
by a Logistic Regression classifier, trained through a
similar process as in TUTA1-TQIC-RUN-1, except that
the second best parameter combination C = 300, and
penalty = l1 has been selected.

• TUTA1-TQIC-RUN-3. Temporal labels are predicted
by an SVMlin classifier, which has been trained on
the 80 labeled search query examples in the dry-run
dataset and another N = 10K unlabeled search query
samples randomly drawn from the AOL dataset. Model
parameters A = 2, W = 0.03, U = 3, and R = 0.03
have been selected through a 5-fold cross-validation.

• TUTA1-TQIC-RUN-4. Temporal labels are predicted
by a Logistic Regression classifier, trained through a
similar process as in TUTA1-TQIC-RUN-1, except that
only the lemma and named entity features are em-
ployed. Model parameters C = 3, and penalty = l2
have been selected through a 5-fold cross-validation.

3.2.3 Experimental Results
We report the evaluation of 4 TQIC runs with the Preci-

sion scores. As defined in the TQIC subtask, Precision for
each temporal class τ is calculated as

P (τ) =
correct(τ)

total(τ)
, (1)

in which correct(τ) is the number of correctly predicted
search queries in temporal class τ and total(τ) counts the to-
tal number of search queries in τ . And the overall Precision
P̄ is just the Micro-average of P (τ) for each τ :

P̄ =

∑
τ correct(τ)∑
τ total(τ)

. (2)

Besides, we compare the TQIC results for each pair of runs
through the Wilcoxon signed-rank test6, to examine if a sig-
nificant difference exists in the prediction for each class τ .
The detailed evaluations are shown in Table 1.

RUN-1 achieves the highest overall Precision and the high-
est Precisions for the “future” and “atemporal” classes, while
RUN-3 yields the highest Precisions for the “past” and “re-
cent” classes. All the submitted runs RUN-1 to RUN-3
outperform the baseline RUN-4 in in the overall Precision.
This result suggests that by exploring the time gap and verb
tense features in search queries, TQIC results could be sig-
nificantly improved (8.33% overall Precision increment in
RUN-1). Precision improvement for “past” and “recent” in

6http://en.wikipedia.org/wiki/Wilcoxon signed-rank test
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RUN-3 implies that by exploring the lemma and named en-
tity features through semi-supervised learning, the TQIC
result could be improved.

The Precision evaluation in Table 1 also suggests that tem-
poral classes “past” and “future” are relatively easier to pre-
dict than “recent” and “atemporal”. This could be because
our temporal features are less distinguishable for the latter
2 classes. It is also important to notice that RUN-3 achieves
significant improvement (over 10% compared to RUN-1) in
recognizing “recent” search queries, which implies that the
semi-supervised model could learn useful features for the
“recent” class.

To look into the results generated from different runs, we
calculate the confusion matrix for each run prediction and
plot them in the gray-scale color maps as shown in Fig.
1. The subplots in the upper-left, upper-right, lower-left,
and lower-right corresponds to the confusion matrices from
RUN-1 to RUN-4 respectively. In each subplot, the cell lo-
cated at row i and column j corresponds to the number of
observations known to be in class i while predicted as class j.
For all runs, the mis-prediction of “recent” to“future” counts
the largest number of errors, while the mis-predictions of
“atemporal” and “future” to “recent” count a significant part
of the classification errors. Compared to the baseline RUN-
4, none of our submitted runs have effectively reduce these
errors.

We list some of the common errors generated through
RUN-1 to RUN-4 in Table 2. All search queries in the
formal-run were submitted in “May 1, 2013 GMT+0”. For
“recent” to “future” errors, we find 10 samples contain the
year “2013”, in which 3 contain the month “May”. As dis-
cussed in Section 3.1, the time gap features“DIFF same year”
and “DIFF same month” which have been recognized for
these temporal expressions turn to be less indicative of the
temporal classes, since they cannot suggest a useful time
gap. 11 search queries about“weather”have been recognized
as “future”. Because in dry-run 5 out of 6 “weather” queries
have been labeled as “future”, this error could reflect an
over-fitting problem occurred in the model learning phase.
5 search queries about the “tonight” events are labeled as
“recent” but predicted as “future”. Before we analyze this
error, it is also interesting to find the same query string7

“bruins game tonight time” from dry-run and formal-run,
although submitted in different dates, has been labeled with
“future” and “recent”, separately. We believe that in most
cases “tonight” indicates a time point in the near “future”,
and because the time gap is not very long, the interpretation
of “recent” is also reasonable. This observation implies that
the distinction between some temporal classes could become
very vague, which may cause strong disagreements among
different annotators. For the “atemporal” and “future” to
“recent” errors, we find the over-fitting problem on some
specific features, e.g. “cost”, “exchange rate”, and “score”,
has been a major cause. And the failure of understanding
named entities, e.g. “belmont stakes 2013” and “voice 2013”,
is also responsible for some of the errors.

4. TEMPORAL INFORMATION RETRIEVAL
In this section, we investigate the effectiveness of learning-

to-rank algorithms in Temporal Information Retrieval (TIR).
For a detailed description of learning-to-rank technique, please

7id 078 in dry-run and id 194 in formal-run
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Figure 1: Confusion matrices plotted in the gray-
scale color map for TQIC subtask. The subplots
in the upper-left, upper-right, lower-left, and lower-
right corresponds to the confusion matrices from
RUN-1 to RUN-4.

Error Search query

R-F

2013 printable calendar
susan miller may 2013
weather for chicago
local forecast the weather channel
bruins game tonight time
tv schedule tonight

A-R
cost of living comparison
exchange rate calculator
free credit score

F-R
belmont stakes 2013 winner
voice 2013 winner

Table 2: Some common errors found through RUN-
1 to RUN-4 for TQIC subtask.

refer to [1, 6]. Here we focus on feature selection, which is a
fundamental issue in learning-to-rank.

4.1 Features
A total of 15 features are derived for learning a rank-

ing model. To capture the temporal features, we resort
to the temporal expressions and tenses of a document. A
temporal expression in a document is a sequence of tokens
that indicates a point in time, a duration or a frequency.
For example, two pre-annotated temporal expressions are
extracted as: <t val=“201006”> June 2010</t> and <t
val=“201105”>the end of May</t>. Tense is a specific
mechanism built into a specific language, which grammat-
ically indicates when a situation takes place. English has
only two morphological tenses characterized by the presence
of a verb, i.e, past and non-past, the latter covering both
present and future in one verb form. In our work, we take a
sentence as a single unit. Given the noun terms of a search
query, we classify sentences in a document into two types:
(1) sey, it refers to a sentence that includes one or more
noun terms of a search query, (2) sen, it refers to a sentence
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Run past recent future atemporal all
TUTA1-TQIC-RUN-1 0.8533 0.4800 0.8533 0.7733 0.7400

TUTA1-TQIC-RUN-2 0.8533 0.46671 0.82671 0.7600 0.7267

TUTA1-TQIC-RUN-3 0.86671,2 0.58671,2 0.84001,2 0.53331,2 0.7067

TUTA1-TQIC-RUN-4 0.69331,2,3 0.48001,2,3 0.81331,2,3 0.64001,2,3 0.6567

Table 1: Precision scores for TQIC subtask. The best results are indicated in bold for each separate temporal
class and the overall precision. We use the Wilcoxon signed-rank test with p < 0.05 for testing statistical
significance: the superscripts 1, 2, 3 indicate statistically significant differences to RUN-1, RUN-2, and
RUN-3 respectively.

that includes no noun terms of a search query. Besides the
temporal features, the topical feature is also used.

1. Tense-centric Features. 5 tense-centric features are
designed. They are: (1) the ratio of past tense w.r.t. sen-
tences of the type sey, (2) the ratio of non-past tense w.r.t.
sentences of the type sey, (3) the ratio of past tense w.r.t.
sentences of the type sen, (4) the ratio of non-past tense
w.r.t. sentences of the type sen, (5) the ratio of tense of the
target subtopic string w.r.t. all sentences.

2. Features Based on Temporal Expressions. We
collect the temporal expressions from the two types of sen-
tences respectively, then 6 features are designed based on
two lists of temporal expressions (i.e., Ly corresponding to
sentences of the type sey and Ln corresponding to sen-
tences of the type sen). (1) Year variance based on Ly,
(2) Month variance based on Ly, (3) Day variance based
on Ly, (4) Year variance based on Ln, (5) Month variance
based on Ln, (6) Day variance based on Ln. Based on the
query issue time and document publication time, another
3 features are derived using an exponential decay function
DecayRate|val1−val2|, where val1 and val2 are two variables
of the same temporal unit. The intuition is to generate a
score that decreases proportional to the time span between
val1 and val2. The less time span, the more temporally
similar they are. Specifically, we calculate decay scores us-
ing (7) year, (8) month and (9) day respectively, where the
DecayRate is set as 0.5.

3. Topical Feature. The topical feature is used to in-
dicate the topical relevance between a search query and a
document. In our work, the relevance score of the selected
retrieval model is directly used, e.g., the score for a query-
document pair with the TFIDF model.

4.2 Experiments

4.2.1 Experimental Setup
Given the provided document collection“LivingKnowledge

news and blogs annotated subcollection” (denoted as D), the
script CheckSyntax.class is used to turn the original docu-
ment collection files into sanitised XML format. The script
temporalia solrify.pl is used to strip all tags from the docu-
ments, and the obtained collection is denoted as D. Further-
more, D and D are indexed separately using Solr8 (version
4.8.1). D is used to perform retrieval with different mod-
els. For a retrieved document, its tagged version is retrieved
against D via its unique identifier. The temporal features
(i.e., tense-centric features and features based temporal ex-
pressions) are generated based on tagged documents.

The 15 dry-run topics and their rels file9 are used to gen-

8http://lucene.apache.org/solr/
9NTCIR-11TIRTopicsDryRunSupplementaryDocuments.docx

erate datasets for learning ranking models. Each row in a
dataset is a query-document pair: the fist column is the rel-
evance judgement, the second column is query id, the subse-
quent columns are features, and the end of a row is comment
about this pair (e.g., document identifier). For each tempo-
ral class (past, recency, future and atemporal), a dataset is
generated as follows: for each subtopic t (w.r.t. a dry-run
topic T ) of the same temporal class, we perform the initial
retrieval (the search query consists of the topic string, topic
description and the subtopic string) using a specific retrieval
model (e.g., TFIDF), and the top-50 documents are used. If
a document is a really relevant document (i.e., indicated by
the rels file), its relevance judgement is 1, otherwise 0. The
temporal features are extracted based on the tagged version.
For one subtopic, 50 rows of query-document pairs are gen-
erated, which are ranked in an decreasing order of relevance
judgement. Each class-specific dataset can be used to learn-
ing a ranking model so as to predict document ranking for a
formal-run subtopic of the same temporal class. Besides, we
also combined the 4 datasets corresponding to 4 temporal
classes into an entire dataset. We use this dataset to learn
a ranking model, and predict document ranking for formal-
run subtopics of each temporal class. Based on RankLib10,
we compared different learning algorithms included in this
toolkit via 5-fold cross validation using the dry-run topics.
Finally, the LambdaMART[13] learning algorithm is used.

4.2.2 Temporal Information Retrieval Runs
We submitted 3 runs for the TIR subtask. Here the 4th

run is added as a baseline:

• TUTA1-TIR-RUN-1. The retrieval model LM is used
to perform retrieval for generating training datasets
and formal runs. The ranking model is learnt based
on the entire dataset.

• TUTA1-TIR-RUN-2. The retrieval model LM is used
to perform retrieval for generating training datasets
and formal runs. The ranking model is learnt based
on class-specific datasets.

• TUTA1-TIR-RUN-3. The retrieval model TFIDF is
used, and the ranking model is learnt based on the
entire dataset.

• TUTA1-TIR-RUN-4. As an unofficial baseline, this
run merely relies on the retrieval model LM.

4.2.3 Experimental Results

10http://sourceforge.net/p/lemur/wiki/RankLib/
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Run
P@20 nDCG@20

past recency future atemporal all past recency future atemporal all
TIR-RUN-1 0.4890 0.6080 0.5920 0.5840 0.5683 0.3717 0.4742 0.4536 0.4511 0.4377
TIR-RUN-2 0.5130 0.6300 0.5720 0.6020 0.5792 0.3803 0.4920 0.4241 0.4673 0.4409

TIR-RUN-3 0.5120 0.6090 0.6180 0.5940 0.5832 0.3968 0.4832 0.46732 0.4425 0.4474

TIR-RUN-4 0.41902,3 0.5790 0.55303 0.51502 0.51651,2,3 0.3876 0.4893 0.4819 0.4496 0.4521

Table 3: Results for TIR subtask. For each temporal class plus “all”, the best result is indicted in bold.
We used the Wilcoxon signed-rank test with p < 0.05 for testing statistical significance: the superscript 1, 2, 3
indicate statistically significant differences to RUN-1, RUN-2, RUN-3 respectively

Table 3 shows the performance of the 4 runs, where P@l
and nDCG@l are used as the evaluation metrics with a cut-
off value of 20. P@l represents the precision at l, nDCG@l
represents the normalised discounted cumulative gain.

From Table 3, we can see that: (1) Based on the same
LM retrieval model, RUN-2 that uses a class-specific ranking
model performs better than RUN-1 (past, recency, atempo-
ral), whose ranking model is learnt by combining the train-
ing datasets of each temporal class. The probable reason
is that the adopted features perform inconsistently with re-
spect to different temporal classes, thus class-specific rank-
ing model is better. (2) Based on the TFIDF retrieval
model and a ranking model learnt using the entire training
dataset, RUN-3 is able to retrieve more relevant documents
for the subtopic of future. (3) All learning-to-rank mod-
els perform better in terms of rank-insensitive metric P@20
than the baseline method. But in terms of nDCG@20, not
all learning-to-rank models outperform the baseline method.
For the future temporal class, the baseline method even out-
performs the 3 learning-to-rank models. The overall results
demonstrate that the technique of learning-to-rank can im-
prove the temporal retrieval performance.

5. CONCLUSIONS
In this paper, we described our approaches to solving the

TQIC and TIR subtasks in the NTCIR-11 Temporalia task.
For TQIC, 3 temporal features, i.e. the time gap feature,

the verb tense feature, and the lemma and named entity fea-
ture, were employed to recognize the temporal information
in search queries. Besides, an external resource AOL 500K
User Session Collection, was employed to explore the tempo-
ral information from the background, with a semi-supervised
model. Evaluation of 3 submitted runs and a baseline run
indicated that our temporal features could significantly im-
prove the TQIC precision. However, the error analysis also
suggested that for some specific mis-predictions such as “R-
F” and “A-R”, the submitted runs achieved very little or
no improvements. We thoroughly analyzed these errors and
summarized the possible causes. Our future work for TQIC
will focus on investigating the temporal information in lem-
mas and named entities. Meanwhile, other methods for pre-
venting the learning algorithms from over-fitting will also be
employed.

For TIR, we investigated the learning-to-rank technique
for temporal ranking. The experimental results show that:
the technique of learning-to-rank can improve the temporal
retrieval performance. There are also some limitations of
our current work. For example, (1) the training datasets
generated using 15 dry-run topics are in fact very small.
(2) the editorial relevance is just binary judgement. In the
future work, we will investigate the effectiveness of exploring

more reasonable features.
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