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Introduction

• Who are we?
– HITSZ-ICRC group: we are from Intelligent 

Computing Research Center (ICRC), Harbin 
Institute of Technology Shenzhen Graduate School 
(HITSZ), Shenzhen, China.

• Which task/subtask did we participate?
– Temporal Query Intent Classification (TQIC)
– Temporal Information Retrieval (TIR)

2014/12/11 3



Introduction

• Temporal Information Retrieval (TIR)
– For a given topic, participants retrieve relevant 

documents for different kinds of temporal 
subtopics

– A given search topic contains 
title, description, query date, and 4 different class 
subtopics including class information 
(atemporal, past, recency, future)
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Topic for TIR subtask
Title Girl with the Dragon Tattoo

Description I've recently watched a film called Girl with the Dragon 
Tattoo, and really liked it. Therefore, I would like to gather 
information about the movie.

Past question How did the casting of the film develop?
Recency question What did the recent reviews say about the film?
Future question Is there any plan about its sequel?
Atemporal
question

What are the names of main actors and actresses of the 
film?

Search date 28 Feb 2013 GMT+0:00

2014/12/11 5



Document Collection

• Supplied “LivingKnowledge news and blogs 
annotated sub-collection” corpus, contains 3.8M 
documents from blogs and news sources.

• Available information of a document in Corpus
– Document create time
– Named entity tags in content
– Time expression tags in content
– Normalized value for time expression
– …
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Document Collection
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TIR Process
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Candidate Document Retrieval

• Create an index on the document collection 
and retrieve for each subtopic using Lucene 
toolkit with BM25 language model

• Save top 500 retrieval results in result list as 
candidate documents for each subtopic

• Save BM25 score for each candidate 
document as content relevant score CR
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Temporal Relevant Judging
• Judge temporal relevant between subtopic and 

candidate document 
– Calculate the date distance between search date and each 

time expression in document
– Classify each time expression into class past, recency or 

future
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– Judge temporal relevant according to whether the 
document contains same class time expressions as 
subtopic class

– If have, the temporal relevant score TR for the document is 
1, otherwise, the score TR is 0

Where Dq is search date of the topic, DXi is 
normalized time expression in document, Bp is the 
classification boundary for past class time 
expression, Br is the classification boundary for 
recency class time expression. Bp=Br=300 (days) here.
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Document Re-Ranking

• Relevant score weight sum
– Sum content relevant score and temporal relevant 

score as final relevant score for candidate 
document ranking
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Where R is the document final relevant score to the search subtopic, Rc
is the content relevant score, Rt is the temporal relevant score,  α is the 
weight coefficient and α≥0, α≤1.

(1 )c tR R Rα α= + −

Subtopic Class Coefficient
past 0.85

recency 0.73
future 0.76

atemporal 1

– Different class use 
different coefficient value
to calculate relevant score 



Document Re-Ranking

– Coefficient choosing
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Document Re-Ranking

– Deficiency of relevant score weight sum method
• Difficult to get the best coefficient for each subtopic
• Subtopic class information is necessary

• Learning to rank 
– Features 

• content relevant feature
• Temporal relevant feature
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Document Re-Ranking

• Learning to rank
– Feature List for learning to rank
similarity between search topic and document title
similarity between search topic and document content
similarity between search subtopic and document title
similarity between search subtopic and document 

content
BM25 relevant score between search topic and document
BM25 relevant score between search subtopic and 

document
temporal relevant
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Document Re-Ranking

• Learning to rank
– Training data: 15 search topic each with 4 

subtopics and relevant documents in qrels file in 
task dry run step

– Algorithm: LambdaMART algorithm in RankLib
toolkit

– Model
• Train independent model for each subtopic class

– Dificiency: Lack of training data
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Subtopic classification

• Use method in TQIC subtask to classify search 
subtopic class
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Subtopic classification

• Classification accuracy of method in TQIC 
subtask is poor
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runID atemporal future past recency

PrW 70.67% 64.00% 78.67% 62.67%

PrWsQW 69.33% 66.67% 77.33% 57.33%

qRPrHNB 57.33% 68.00% 81.33% 61.33%

• accuracy on 
TIR subtopic 
classifying is 
about 80%

• Training one rank model for all the 4 subtopic 
classes to avoid the subtopic classification step

Accuracy of each class in TQIC formal runs



Results Evaluation
• We submit 3 runs: Run BW (run1), Run BWCC 

(run2), Run LTRNC2 (run3)
• Run description

– All 3 runs used search title, subtopic domain as input 
information

– run1: used the relevant score weight sum method, and 
used the original class information of search subtopic.

– run2: used the relevant score weight sum method, used 
the our classifiers in TQIC to get subtopic class, and did not 
use the original class information of search subtopic.

– run3: used 1 model for 4 subtopic classes learning to rank 
method (LambdaMART algorithm here) , and did not use 
the original class information
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Formal Results Evaluation
• Run run3 is better 

than run1 and run2
• No significant 

difference 
between run1 and 
run2
– Use time factor 

can improve re-
rank result, no 
matter which class 
it is.

– Same temporal 
feature for each 
class is not much 
suitable
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runID nDCG
@20

AP
@20

P@
20

nERR
@20

BW (run1) 0.4544 0.4587 0.5895 0.6056
BWCC(run2) 0.4554 0.4599 0.5902 0.6064

LTRNC2(run3) 0.4768 0.483 0.6018 0.6313

Results evaluation of TIR subtask runs

runID atempor
al future past recency

BW (run1) 0.4669 0.4607 0.4005 0.4897
BWCC(run2) 0.4678 0.4593 0.403 0.4915
LTRNC2(run3) 0.5092 0.4804 0.4227 0.495

nDCG@20 of each class in TIR formal runs



Results Evaluation
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Results Evaluation
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Results Evaluation

• The more number of relevant documents in 
answer file, the higher nDCG value for most of  
subtopics
– The number of relevant document for subtopic 

036r, 015r, 050r and 042r is 141, 173, 68 and 
24, nDCG value for those subtopics is 
0.9159 , 0.8887, 0.0772 and 0

– Fewer relevant documents in data set means 
smaller chance to get relevant documents for the 
top 20 results
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Summary

• Use date distance as temporal feature 
• Tried relevant score weight sum method
• Tried learning to rank method
• Future work

– Improve temporal feature extraction. Eg. using 
float data between 0 and 1 to indicate the 
temporal relevant instead of 0, 1 only

– Using the NE tags in document content
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Thanks for your Attention
Q&A

Welcome offline discussion by sending emails to 
houyongshuai@hitsz.edu.cn
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