
Search Intent Mining by Word Vectors Clustering at
NTCIR-IMine

Jose G. Moreno
LIMSI, CNRS,

Université Paris-Saclay,
F-91405 Orsay

moreno@limsi.fr

Gaël Dias
GREYC/CNRS

gael.dias@unicaen.fr

ABSTRACT
This paper presents a method for intent mining based on se-
mantic vectors and search results clustering. Our algorithm
represent words as documents and performs a state-of-the-
art approach for query log driven clustering. Similarities be-
tween query logs and words are calculated by using semantic
vectors. Based on a manual selection of vertical represen-
tatives, our method is able to correctly identify intents and
to classify them into vertical classes. Results in the Query
Understanding of the iMine2@NTCIR subtask show that
our unique run submission outperforms other participants
in terms of D−nDCG@10 and achieves the second position
in the general team raking.

Team Name
HULTECH

Subtasks
Query Understanding Subtask (English)

Keywords
query log clustering, intent mining, semantic vectors

1. INTRODUCTION
Identifying correctly the intent of users when the use a

search engine is a challenging task. Nowadays, users not
only expect high quality results but also adequately classi-
fication in vertical interfaces. Vertical interfaces allow the
visualization of results in different contexts. Consider when
a user search using a keyword as “star wars”. In this case the
user could be searching by the movie or for a recent news
about the movie. The intent “star wars the force awakens” is
clearly related to the movie released on December 2015 and
the user is maybe interested in buying something associated
with the movie. For example, buying a streaming service.
Another intent such as “star wars rogue one”, the new se-
quel movie, is more with news1. These users’ expectations
are in constant developing by the major commercial search
engines.

This paper present our participation in the search intent
mining subtask of iMine2 at NTCIR. It is our third partic-
ipation in the NTCIR tasks related to intent identification.

1At the moment of writing this paper the movie was not
released yet.

In previous years [9][2], we have proposed two different so-
lutions: a modified version of the classical k-means algo-
rithm to identify intents through the clustering of search
results [4] and a semantic vector-based strategy which make
use of arithmetic operation to identify the user intents [5].
This year the organizer are included the vertical classifica-
tion task, in order to reinforce the intent mining subtask.
In short, the subtask consist in given a query provide a two
levels set of intents that better match the user request with
a vertical class for the lower level. First level is limited to
four and second to 10 intents. However, less intents could be
provided. Fully description of the task and examples could
be find in the description paper of the task [10].

In order to continuing with our research in clustering for
intent mining, this year we have explored the integration
of semantic vectors into Dual C-means [8], a generalization
of an algorithm [7] that has shown good performance in the
previous editions of this task [4]. Semantic vectors is a recent
developed technique that uses neural networks to efficiently
represent words as vectors keeping interesting syntactic and
semantic information. This technique has showed to achieve
state-of-the-art results in many natural language processing
tasks. In our previous participation we have used collocation
measures that were calculated over a set of Web results. For
this year, we have replaced which have deal with a drastically
simplification of our algorithm by the integration of semantic
vectors.

The remainder of this paper includes a description of our
intent identification algorithm in Section 2. Vertical identifi-
cation strategy is presented in Section 3. The experimental
results and discussions are presented in Sections 4 and 5.
Finally, conclusions are presented in Section 6.

2. INTENT IDENTIFICATION
Our method is based on a semantic representation of words

within the Dual C-means (DCM) algorithm [8]. DCM is a
iterative search results clustering (SRC) method that allow
to cluster documents and simultaneously select the appro-
priate label from a set of candidates. In each step, DCM first
calculate the similarity between labels –query logs– and doc-
uments to assign documents to cluster and later a label is
selected from a list of candidates for each cluster. The algo-
rithm iterates until convergence is achieved. Documents are
not clustered by DCM, but words instead. Indeed, words
are used as documents and query logs as centroid candi-
dates. Similarities between the words and query logs are
obtained by calculating the cosine similarity of the vector of
each word and the a label candidate. These semantic vectors

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

41

are a dense vector which encode the semantic information
obtained from a corpus. Several strategies allow to obtain
semantic vector. In this work, a recurrent neural network
based algorithm is used for the calculation of this vectors2.
Our used matrix based representation and our adapted ver-
sion of DCM are described in the following sections.

2.1 Semantic vectors
Many recent works in natural language processing and in-

formation retrieval have been interested in this kind of tech-
niques. A basic technique to calculate semantic vectors was
based on singular value decomposition, but a new neural
networks based strategy has attracted a lot of attention [3].
These vectors allow to encapsulate semantic and syntactic
information in a 3003 dimension vectors. The code to calcu-
late these vectors is publicly accessible and it has been also
implemented in many different libraries4 and frameworks5.
In this paper, we are not interested in the developing of
adapted vectors, but in the use of them. For that reason, we
have downloaded and used general proposes pre-calculated
vectors calculated by [3].

2.2 Matrix based representation
Our modified version of DCM uses a matrix with the sim-

ilarities between each label candidate and the words con-
tained by all the candidates (full vocabulary). Let Q be the
set of query logs candidates to the query q. Mq is nxm the
matrix that contains the semantic similarity between each
qi intent in Q and the full vocabulary extracted from Q.
Note that n = |Q| and m correspond to all the words find in
Q. The Mq

ij value correspond to the cosine similarity calcu-
lated between the semantic vector for the qi intent and the
wj word.

2.3 Matrix based Dual C-means
As input DCM receives the Mq matrix, a desired number

of clusters and a maximal number of iterations. Figure 1
shows the python code for DCM. First, an initialization step
is performed to identify the top-k relevant label candidates
(lines 2 − 3). Then, the iterative process is started. Each
word is assigned to the label with maximal similarity (line 5)
and then each for cluster the maximal label is assigned (lines
6 − 11). These previous steps are performed a predefined
number of maximal iterations itermax. As output, the DCM
algorithm provides the labels that represent each cluster.
To ensure that k cluster are provided some candidates are
added in cases when a number of k labels are selected in the
iterative process (lines 12− 16).

3. VERTICAL IDENTIFICATION
Similarly that in the intent identification section, semantic

vectors are used to automatically assign the vertical class for
each selected intent. Indeed, our method is based in a small
set of words used a represent of the concept expressed by
each vertical class. The size of each set variate between 2
and 4 manually selected words. Table 1 show the set of words
for each vertical class. So, each intent string is mapped to

2Actually, the pre-calculated vectors distributed with
word2vec where used.
3This value is a parameter.
4Gensim: https://radimrehurek.com/gensim/
5Tensorflow: http://www.tensorflow.org

1 def dcm(mq,k,iter max):
2 init = numpy.sum(mq,1)
3 ind i = init.argsort()[−k:][::−1]
4 for i in range(iter max):
5 pi d = mq[ind i,:].argmax(axis=0)
6 ind i = []
7 for id pi d in numpy.unique(pi d):
8 partit = numpy.where(pi d == id pi d)[0]
9 sum partit = numpy.sum(mq[:,partit],1)

10 ind i.append(sum partit.argsort()[−1:][::−1][0])
11 ind i = [x for x in iter(set(ind i))]
12 for e in init.argsort()[−k:][::−1]:
13 if len(ind i)>=k:
14 break
15 elif not e in ind i:
16 ind i.append(e)
17 return ind i

Figure 1: Python code of our matrix based Dual C-means
algorithm.

Vertical class Words
Web web, internet and online

Image image and picture
News news and event
QA qa, question, how and what

Encyclopedia encyclopedia, wikipedia and facts
Shopping shopping and mall

Table 1: Verticals and words used to represent the respective
concept.

the semantic space and its similarity to each set of words is
calculated using the cosine similarity between the average
intent vector and the average vector of the vertical class.
The vertical class with highest value is assigned to the intent.

4. EXPERIMENTS AND RESULTS

4.1 Experimental setup
A total of 100 strings were used as queries for the evalu-

ation. In the final results, only 98 queries were considered6.
For each of these queries, the system must provide a list of a
maximum of four first level intents with a maximum of ten
second level intents associated to each one in the first level.
Each second level discovered intent was manually classified
into relevant or not, as well as their relevance with its respec-
tive first level intent. For evaluation, we used independent
metrics such as I − rec@10, D− nDCG@10 and V − score,
and their combination into D#−nDCG@10 and QU−score.
Finally, the QU − score value is used to compared the eval-
uated systems. A full description of the evaluation metrics
and the used dataset can be found in [10]. A total of three
teams participated in the task with 10 runs. Our team have
submitted only one run.

4.2 Results
In order to access the results, we present an analysis on

the independent metrics. For each metric, we classified the
results into four equally distributed groups sorted by the re-
spective results of all participants. This allows us to split

6For major details check [10].

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

42

(a) Hardest (b) Middle hard

(c) Middle easy (d) Easiest

Figure 2: I − rec@10 results for the submitted runs. From left to right and top to bottom, the hardest to the easiest queries.

the results into four different levels of difficulty (hardest,
middle-hard, middle-easy and easiest). Results are showed
in Figures 2, 3 and 4 were each point represent the accu-
mulative performance starting from the easiest query to the
hardest in average for each group. This accumulative result
allows to draw some conclusions the evolution of each algo-
rithm into each group of queries. The order within the group
and to discriminate each query into a group is determined
by the average between all the runs.

In the case of I− rec@10, our algorithm performs well for
the hardest group and all the algorithms perform very simi-
lar for the easiest group excluding the rucir-Q-E-3Q which
obtains significantly lower results in the three groups. In-
deed, the performance of this run does not improves when
the task become easier.

Regarding the D−nDCG@10 metric, the results are quite
different. For the hardest group, we can distinguish five
groups of curves with similar results with our run in the top,
which is clearly superior to the runs of all the other partici-
pants and again the rucir-Q-E-3Q run in the bottom. It is
clear that runs from the same participant tend to behaves
similarly. For the middle hard many of the runs manage
to get the top performance, but KDEIM-Q-E-4S, rucir-Q-
E-2Q and rucir-Q-E-4Q does not manage it yet. For the
graphs middle easy and easiest all the runs get similar re-
sults, excluding rucir-Q-E-3Q.

Finally, for results for the V − score metric are clearly
different to the previous ones. Note that in this case, the
runs from rucir outperforms the other participants. Only
in the middle easy and easiest our run manage to slightly
approach the rucir lower performance. KDEIM submissions
are clearly the less performer for this metric. In the easiest
case they are far from the other runs.

The average results by team are shown in Table 2. We
were the only team with one submission which explains the
no standard deviation in our results. It is interesting to
remark that the rucir team manage to get the best and
the worst performance for the final metric, the QS − score.
This could be explained by a problem with their rucir-Q-E-
3Q run. In general, our team performs well obtaining the
second position by teams and the fifth by runs. Indeed, we
have undesired performances for the V − score which can
be explained by the few number of words used to represent
each vertical class (see Table 1). Note that this is consistent
with the results of Figure 4. Hardest vertical classes are
not adequately classified but the easiest are. An intuitive
solution is the expansion of the sets, however selecting larger
set could deal with a semantic shift.

5. DISCUSSION
The results obtained by our algorithm are quite promis-

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

43

(a) Hardest (b) Middle hard

(c) Middle easy (d) Easiest

Figure 3: D − nDCG@10 results for the submitted runs. From left to right and top to bottom, the hardest to the easiest
queries.

Table 2: Average and standard deviation results for each team. Best average performance marked in bold.
I − rec@10 D − nDCG@10 D#− nDCG@10 V − score QU − score

HULTECH 0.728±0.000 0.679±0.000 0.703±0.000 0.366±0.000 0.534±0.000
KDEIM 0.751±0.005 0.635±0.048 0.693±0.025 0.297±0.006 0.500±0.008
rucir 0.686±0.128 0.504±0.121 0.595±0.119 0.532±0.090 0.564±0.098

ing. Note that the code of the entire core of our algorithm is
presented in Figure 1. It takes only 17 lines and it is able to
achieve a good performance in overall. Indeed, the code for
selecting the vertical class is not shown but it takes just few
lines and including more words to improve the performance
will not increase the number of lines of code. It is possible
also because the power of the used semantic vectors. These
vectors were not adapted to this specific task and are general
vectors calculated over a huge collection of web documents.
This vector are publicly available which allows the replica-
tion of our experiments in further research. The full python
code will be also available as extra content of this paper.

Another situation that could help to improve the results is
in consideration of extra candidates in as intents. It will not
deal with a significant increase of the code (or none). How-
ever, to achieve top-1 performance some parameters must
be adjusted and extra pre-processing or heuristics must be
considered.

6. CONCLUSION
This paper present the HULTECH participation in the

iMine2 Query Understanding subtask. Our submission achieves
the best performance in terms of D−nDCG@10 and the sec-
ond position when evaluated with the overall metric, QU −
score by teams. Our algorithm is based in a search results
clustering algorithm combined with a new semantic repre-
sentation for words.

The main drawback of our system is the inadequately per-
formance for the vertical class classification problem. Future
work will focused on the improvement of this situation. Ad-
ditionally, we plan to include a word sense disambiguation
system based on the web graph [6] and their combination
with text content [1].

7. REFERENCES
[1] S. Acharya, A. Ekbal, S. Saha, P. Santhanam, J. G.

Moreno, and G. Dias. Multi-objective word sense

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

44

(a) Hardest (b) Middle hard

(c) Middle easy (d) Easiest

Figure 4: V − score results for the submitted runs. From left to right and top to bottom, the hardest to the easiest queries.

induction based on content and interlink connections.
In 21st International Conference on Applications of
Natural Language to Information Systems, 2016.

[2] Y. Liu, R. Song, M. Zhang, Z. Dou, T. Yamamoto,
M. P. Kato, H. Ohshima, and K. Zhou. Overview of
the ntcir-11 imine task. In IMine Subtask of the NII
Testbeds and Community for Information Access
Research Workshop (NTCIR-11 2014), 2014.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pages
3111–3119, 2013.

[4] J. G. Moreno and G. Dias. Hultech at the ntcir-10
intent-2 task: Discovering user intents through search
results clustering. In IMine Subtask of the NII
Testbeds and Community for Information Access
Research Workshop (NTCIR-10 2013), 2013.

[5] J. G. Moreno and G. Dias. Hultech at the ntcir-11
imine task: Mining intents with continuous vector
space models. In IMine Subtask of the NII Testbeds
and Community for Information Access Research
Workshop (NTCIR-11 2014), 2014.

[6] J. G. Moreno and G. Dias. Pagerank-based word sense
induction within web search results clustering. In

Proceedings of the 14th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL ’14, pages
465–466, Piscataway, NJ, USA, 2014. IEEE Press.

[7] J. G. Moreno, G. Dias, and G. Cleuziou. Post-retrieval
clustering using third-order similarity measures. In
51st Annual Meeting of the Association for
Computational Linguistics (ACL), 2013.

[8] J. G. Moreno, G. Dias, and G. Cleuziou. Query log
driven web search results clustering. In Proceedings of
the 37th International ACM SIGIR Conference on
Research & Development in Information Retrieval,
SIGIR ’14, pages 777–786. ACM, 2014.

[9] T. Sakai, Z. Dou, T. Yamamoto, Y. Liu, M. Zhang,
and R. Song. Overview of the ntcir-10 intent-2 task. In
Intent-2 Subtask of the NII Testbeds and Community
for Information Access Research Workshop
(NTCIR-10 2013), 2013.

[10] T. Yamamoto, Y. Liu, M. Zhang, Z. Dou, K. Zhou,
I. Markov, M. P. Kato, H. Ohshima, and S. Fujita.
Overview of the ntcir-12 imine-2 task. In IMine
Subtask of the NII Testbeds and Community for
Information Access Research Workshop (NTCIR-12
2016), 2016.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

45

