Zeyang Liu，Ye Chen，Rongjie Cai，Jiaxin Mao，Chao Wang，Cheng Luo， Xin Li，Yiqun Liu ，Min Zhang，Huanbo Luan，Shaoping Ma Information Retrieval Group，Department of Computer Sci．\＆Tech．，Tsinghua University chenye617＠gmail．com

＊Framework Overview

$>$ 4－step framework in query understanding subtask
$>$ Candidate mining，candidate clustering，candidate ranking and vertical predicting．

＞Disambiguation Items from Wikipedia，Baidu Baike and Hudong Baike．
＞Query Facets：Query Completions and Query Suggestions
$>$ Query Reformulations extracted from SogouT
$>$ Query Recommendations from Sogou Search Engine

＊Candidate Clustering with K－Means

$>$ Goal：Find diversified candidates
$>$ Cluster candidates with K－means algorithm
$>$ Query vector representation
$>$ Word embedding trained based on SogouT dataset
＞Long query candidate：average word embedding of the words
$>$ Cluster candidates into n clusters
$>\mathrm{n}=5$ or 10
$>$ Candidate evaluation
＞Clusters

$$
c_{1}, c_{2}, c_{3}, \cdots, c_{n}
$$

＞Inner distance

$$
S_{\text {inner }}(q)=\frac{\sum_{q_{k} \epsilon c_{i}, q_{k} \neq q} \operatorname{dist}\left(q, q_{k}\right)}{\left|c_{i}\right|-1}, q \epsilon c_{i}
$$

＞Outer distance

$$
S_{\text {outer }}(q)=\min \left\{\frac{\sum_{q_{k} \epsilon c_{i}} \operatorname{dist}\left(q, q_{k}\right)}{\left|c_{i}\right|}\right\}(j=1,2, \cdots, n, j \neq i), q \epsilon c_{i}
$$

$>$ Candidate score

$$
S(q)=\frac{S_{\text {outer }}(q)-S_{\text {inner }}(q)}{\max \left\{S_{\text {outer }}(q), S_{\text {inner }}(q)\right\}}
$$

＊Candidate Ranking with Learning to Rank

$>$ Goal：Find high quality subtopic candidates
$>$ Rank candidates with Learning To Rank algorithm （RankBoost）
＞Features：
Text similarity：length difference，Jaccard similarity，edit distance．．． Word embedding：average，medium，top 3 average of cosine similarities

Search Result Similarity：number of shared results．．．
＞Metric to optimize：NDCG＠10

＊Vertical Predicting

$>$ Training query
＞Seed Urls generated from an Open Directory Project
$>$ Random walk on a click－through bipartite graph
$>$ Vertical Distribution
$>$ Vertical information collected from search result pages

$$
\mathrm{P}-\text { score }=\frac{1}{\log \left(1+R_{i}\right)}
$$

$>$ Model Construction
＞Logistic Regression
$>$ Word embedding query representation
$>$ Six prediction models for each type of verticals
$>$ Vertical Diversification
$>$ Empirical rules
$>$ Replace the top 3 Web intent with corresponding vertical intent
$>$ The top vertical result is chosen to be the vertical intent if there are more than two verticals in the top 3 positions

＊Experimental Results

RUNNAME	SYSTEM DESC．	D\＃－ nDCG	V－ score	QU－ score
THUIR－QU－ 1A	Cluster all subtopic candidates into 10 clusters and select the candidate with the highest $\mathrm{S}(\mathrm{q})$ from each cluster．	0.5204	0.5579	0.5392
THUIR－QU－ 2A	Cluster all subtopic candidates into 5 clusters and select two candidates with the highest two S（q）from each cluster．	0.5550	0.5506	0.5528
THUIR－QU－ 1B	Rerank the 10 subtopics generated by THUIR－ QU－1A with learning to rank algorithm．	0.5368	0.5763	0.5565
THUIR－QU－ 2B	Rerank the 10 subtopics generated by THUIR－ QU－2A with learning to rank algorithm．	0.5436	0.5686	0.5561
THUIR－QU－	Cluster all subtopic candidates into 5 clusters and select the candidate with the highest ten 3A	0.4973	0.5942	0.5458

＊Retrieval Models

＞Probabilistic model based on BM25 and our previous proposed word pair model．
$>$ Relevance score for subtopic $>R(q, D)=W_{B M 25}+\alpha \cdot W_{w p}$ $>W_{B M 25}=\sum_{i=1}^{m} \log \frac{N-n\left(q_{i}\right)+0.5}{n\left(q_{i}\right)+0.5} \cdot \frac{f\left(q_{i}, D\right) \cdot\left(k_{1}+1\right)}{f\left(q_{i}, D\right)+k_{1} \cdot\left(1-b+b \cdot \frac{|D|}{a v g d l}\right)}$ $>W_{w p}=\sum_{i=1}^{m} \log \frac{N-n\left(q_{i} q_{i+1}\right)+0.5}{n\left(q_{i} q_{i+1}\right)+0.5} \cdot \frac{f\left(q_{i} q_{i+1}, D\right) \cdot\left(k_{1}+1\right)}{f\left(q_{i} q_{i+1}, D\right)+k_{1} \cdot\left(1-b+b \cdot \frac{\mid D D}{\text { avgdl }}\right)}$
$>$ Relevance score for query
$>R(Q, D)=\sum_{i=1}^{10} R\left(q_{i}, D\right) \times S\left(q_{i}\right)$
$>$ Vertical importance based on subtopic candidate score $>I(v)=\alpha \cdot S-\operatorname{score}(v)$
$>$ Combination of $R(Q, D)$ and $\mathrm{I}(v)$

＊Experimental Results

RUNNAME	D\＃－nDCG （unclear topics）	nDCG （clear topics）	D\＃－nDCG＋nDCG （all topics）
THUIR－QU－ 1A	0.6677	0.5756	0.6594
THUIR－QU－ 2A	0.6664	0.5652	0.6573
THUIR－QU－ 1B	0.6594	0.5416	0.6488
THUIR－QU－ 2B	0.6632	0.5442	0.6525
THUIR－QU－ 3A	0.6429	0.5506	0.6346

$>$ Training set：Ranked Subtopics from NTCIR－11 Imine

