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NTCIR: Imine-2

*Search Intent and Task Mining

*Goal: explore and evaluate the technologies of
understanding user intents behind the query and
satisfying different user intents.

*Subtasks:

* Query Understanding(C): generate a diversified ranked
list of subtopics with corresponding vertical intents

*Vertical Incorporating(C): return a diversified ranked
list of not more than 100 results, including organic
documents and virtual vertical results.
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Candidate Mining

*Disambiguous items

* Wikipedia, Baidu Baike and Hudong Baike
*Query Facets

* Query completions and query suggestions
*Query Recommendations

* Crawled from Sogou and Baidu

*Query reformulations

* Extracted from SogouT dataset



Candidate Mining

*Query reformulations
*SogouT dataset
*Session detection [Catledge et al., 1995]
* Find out sessions containing the task query

* Queries in such sessions are regarded as query
reformulations



Subtopic Candidate Clustering

* Background: Candidates from different resources are duplicated
* Goal: Find diversified candidates
* Cluster candidates with K-means algorithm

e Query vector representation
* Word embedding trained based on SogouT dataset

* Long query candidate: average word embedding of its’ words

* Cluster subtopic candidatesinto n clusters

*n=50r10

...win,wind,wind telecom,wind telecom o
...wind,windy,windy outdoor,windy dressing....

Query Sessions



Subtopic Candidate Clustering

e Subtopic candidate evaluation

* clusters: ¢,,C,, " *,C,
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Candidate Ranking

* Background: Candidates are noisy
* Goal: Find high quality subtopic candidates
* Rank candidates with Learning To Rank algorithm

* Features:
» Text similarity: length difference, Jaccard similarity, edit distance...
 Word embedding: average, medium, top 3 average of cosine similarities

e Search Result Similarity: number of shared results...

* Metric to optimize: NDCG@10

* Training set: Ranked Subtopics from NTCIR-11 Imine



Candidate Ranking
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Vertical Predicting

* Training Query
e 1212 Seed Urls generated from an Open Directory Project (ODP)

* News, videos, shopping, communities and games

http://movie.youku.com/ an online video site
Movie
http://www.iqiyi.com/dianying/ an online video site
http://cctv.cntv.cn/ the official website of CCTV
Television o -
Video http://www.brtn.cn/ U@ Webs1te O.f Beymg
Television Station
http://ent.sina.com.cn/film/ DB abp }lt HONESNE
News of celebrities
Movie a news website about moives and

http://ent.163.com/ celebrities



Vertical Predicting

* Random walk

* Based on a click-through bipartite graph

* Expand candidate queries based on the seed urls
* Vertical Distribution

 Vertical information collected from search engine result page

* Vertical types extracted from CSS styles



Vertical Predicting

* Random walk
* Based on a click-through bipartite graph

* Expand candidate queries based on the seed urls

* Vertical Distribution
 Vertical information collected from search engine result page
* Vertical types extracted from CSS styles
* Presentation score

1

P-score = { log(1+ R;)
0 else

if exists




Vertical Predicting

* Model Construction
* Logistic Regression
e Six prediction models for each type of verticals
* Input: Query representation based on word embedding
* Output: presentation score of one specific type of vertical

* Vertical type with the highest score is chosen to be the vertical intent



Vertical Diversification

* Background: strong effect of web vertical bias
* Web verticals occupy a large portion of search results in practical

* The prediction performance is limited



Vertical Diversification

* Background: strong effect of web vertical bias
* Web verticals occupy a large portion of search results in practical

* The prediction performance is limited

* Empirical rules for queries with web vertical intent

* If the top result is a vertical result: replaced with the corresponding vertical

intent

* If there are two verticals in the top 3 positions: replaced with the highest

ranked vertical



Query Understanding Results

THUIR-QU-1A

THUIR-QU-2A

THUIR-QU-1B

THUIR-QU-2B

THUIR-QU-3A

Cluster all subtopic candidates into 10
clusters and select the candidate with the
highest S(q) from each cluster.

Cluster all subtopic candidates into 5
clusters and select two candidates with
the highest two S(q) from each cluster.

Rerank the 10 subtopics generated by
THUIR-QU-1A with learning to rank
algorithm.

Rerank the 10 subtopics generated by
THUIR-QU-2A with learning to rank
algorithm.

Cluster all subtopic candidates into 5
clusters and select the candidate with the
highest ten S(q).
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Vertical Incorporating

* Retrieval Models for Organic Results:

* Probabilisticmodel based on BM25 and our previous proposed word pair
model

» Relevance score for subtopic

*R(q,D) = Wgpmzs + a- Wy,

° W - m l N—n(qi)+0.5 . f(ql';D)'(k1+1)
BM25 = j=1 10 (@)+05 D]
n{qi)+0. f(qi'D)+k1°(1_b+b'avgdz)
cW,, =Y lo N-1(qiqi+1)+0.5 f(qiqi+1,0) (k1 +1)
wp T 4i=1 n(giqir,)+0.5 D]
qi9i+1/)7Y. f(qiqi+1’D)+k1°(1_b+b'avgdl)

* Relevance score for query

* R(Q,D) = %2, R(q:, D)xS(q;)



Vertical Incorporating

*Vertical Result Ranking

 Vertical importance based on subtopic candidate score

I(v) = - S-score(v)

e v: a type of vertical intent
* S — score(v): the score of the subtopic which contains this vertical intent
* a: importance weight, different for different types of verticals

* Combination of R(Q,D) and I(v)



Vertical Incorporating

*Vertical Result Ranking

 Vertical importance based on subtopic candidate score

I(v) = - S-score(v)

e v: a type of vertical intent
* S — score(v): the score of the subtopic which contains this vertical intent
* a: importance weight, different for different types of verticals

* Combination of R(Q,D) and I(v)



Vertical Incorporating Results

D#-nDCG nDCG D#-nDCG+nDCG
(unclear topics) | (clear topics) (all topics)

THUIR-QU-1A 0.6677 0.5756 0.6594
THUIR-QU-2A 0.6664 0.5652 0.6573
THUIR-QU-1B 0.6594 0.5416 0.6488
THUIR-QU-2B 0.6632 0.5442 0.6525
THUIR-QU-3A 0.6429 0.5506 0.6346
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