THUIR@NTCIR-12 IMine

Zeyang Liu, <u>Ye Chen</u>, Rongjie Cai, Jiaxin Mao, Chao Wang, Cheng Luo, Xin Li, Yiqun Liu, Min Zhang, Huanbo Luan, Shaoping Ma

Tsinghua University

Jul 7th, 2016

NTCIR: Imine-2

- Search Intent and Task Mining
- Goal: explore and evaluate the technologies of understanding user intents behind the query and satisfying different user intents.
- •Subtasks:
 - Query Understanding(C): generate a diversified ranked list of subtopics with corresponding vertical intents
 - Vertical Incorporating(C): return a diversified ranked list of not more than 100 results, including organic documents and virtual vertical results.

Query Understanding Framework

Candidate Mining

- Disambiguous items
 - Wikipedia, Baidu Baike and Hudong Baike
- Query Facets
 - Query completions and query suggestions
- Query Recommendations
 - Crawled from Sogou and Baidu
- Query reformulations
 - Extracted from SogouT dataset

Candidate Mining

- Query reformulations
 - SogouT dataset
 - Session detection [Catledge et al., 1995]
 - Find out sessions containing the task query
 - Queries in such sessions are regarded as query reformulations

Subtopic Candidate Clustering

- Background: Candidates from different resources are duplicated
- Goal: Find diversified candidates
- Cluster candidates with K-means algorithm
- Query vector representation
 - Word embedding trained based on SogouT dataset
 - Long query candidate: average word embedding of its' words
- Cluster subtopic candidates into n clusters
 - n = 5 or 10

Subtopic Candidate Clustering

- Subtopic candidate evaluation
 - clusters: c_1, c_2, \dots, c_n
 - Inner distance

$$S_{inner}(q) = \frac{\sum_{q_k \in c_i, q_k \neq q} dist(q, q_k)}{|c_i| - 1}$$

Outer distance

$$\sum_{outer} dist(q, q_k)$$

$$S_{outer}(q) = \min\left\{\frac{q_k \in c_j}{|c_j|}\right\} (j = 1, 2, \dots, n, j \neq i)$$

Candidate score

$$S(q) = \frac{S_{outer}(q) - S_{inner}(q)}{\max\{S_{outer}(q), S_{inner}(q)\}}$$

Candidate Ranking

- Background: Candidates are noisy
- Goal: Find high quality subtopic candidates
- Rank candidates with Learning To Rank algorithm
- Features:
 - Text similarity: length difference, Jaccard similarity, edit distance...
 - Word embedding: average, medium, top 3 average of cosine similarities
 - Search Result Similarity: number of shared results...
- Metric to optimize: NDCG@10
- Training set: Ranked Subtopics from NTCIR-11 Imine

Candidate Ranking

Method	No Normalization	Normalized by Sum	Normalized by Z-score
MART	0.5133	0.5426	0.5043
RankNet	0.5365	0.5328	0.6221
RankBoost	0.6618	0.6560	0.5467
AdaRank	0.5428	0.5560	0.5468
Coordinate Ascent	0.6157	0.5839	0.6352
LambdaRank	0.5349	0.4943	0.5796
LambdaMART	0.5306	0.5386	0.5199
ListNet	0.5543	0.5829	0.5783

Query Understanding Framework

Training Query

- 1212 Seed Urls generated from an Open Directory Project (ODP)
- News, videos, shopping, communities and games

Category	Subcategory	URL	Description	
	Movie	http://movie.youku.com/	an online video site	
		http://www.iqiyi.com/dianying/	an online video site	
Video	Television	http://cctv.cntv.cn/	the official website of CCTV	
		http://www.brtn.cn/	the official website of Beijing Television Station	
	News of Movie	http://ent.sina.com.cn/film/	a news website about moives and celebrities	
		http://ent.163.com/	a news website about moives and celebrities	

Random walk

- Based on a click-through bipartite graph
- Expand candidate queries based on the seed urls

Vertical Distribution

- Vertical information collected from search engine result page
- Vertical types extracted from CSS styles

Random walk

- Based on a click-through bipartite graph
- Expand candidate queries based on the seed urls

Vertical Distribution

- Vertical information collected from search engine result page
- Vertical types extracted from CSS styles
- Presentation score

$$P ext{-}score = \left\{egin{array}{l} rac{1}{\log(1+R_i)} & ext{if exists} \ 0 & ext{else} \end{array}
ight.$$

- Model Construction
 - Logistic Regression
 - Six prediction models for each type of verticals
 - Input: Query representation based on word embedding
 - Output: presentation score of one specific type of vertical
 - Vertical type with the highest score is chosen to be the vertical intent

Vertical Diversification

- Background: strong effect of web vertical bias
 - Web verticals occupy a large portion of search results in practical
 - The prediction performance is limited

Vertical Diversification

- Background: strong effect of web vertical bias
 - Web verticals occupy a large portion of search results in practical
 - The prediction performance is limited
- Empirical rules for queries with web vertical intent
 - If the top result is a vertical result: replaced with the corresponding vertical intent
 - If there are two verticals in the top 3 positions: replaced with the highest ranked vertical

Query Understanding Results

RUNNAME	SYSTEM DESC.	D#-nDCG	V-score	QU-score
THUIR-QU-1A	Cluster all subtopic candidates into 10 clusters and select the candidate with the highest S(q) from each cluster.	0.5204	0.5579	0.5392
THUIR-QU-2A	Cluster all subtopic candidates into 5 clusters and select two candidates with the highest two S(q) from each cluster.	0.5550	0.5506	0.5528
THUIR-QU-1B	Rerank the 10 subtopics generated by THUIR-QU-1A with learning to rank algorithm.	0.5368	0.5763	0.5565
THUIR-QU-2B	Rerank the 10 subtopics generated by THUIR-QU-2A with learning to rank algorithm.	0.5436	0.5686	0.5561
THUIR-QU-3A	Cluster all subtopic candidates into 5 clusters and select the candidate with the highest ten S(q).	0.4973	0.5942	0.5458

Vertical Incorporating

- Retrieval Models for Organic Results:
 - Probabilistic model based on BM25 and our previous proposed word pair model
 - Relevance score for subtopic

•
$$R(q, D) = W_{BM25} + \alpha \cdot W_{wp}$$

•
$$W_{BM25} = \sum_{i=1}^{m} log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{avgdl})}$$

•
$$W_{wp} = \sum_{i=1}^{m} log \frac{N - n(q_i q_{i+1}) + 0.5}{n(q_i q_{i+1}) + 0.5} \cdot \frac{f(q_i q_{i+1}, D) \cdot (k_1 + 1)}{f(q_i q_{i+1}, D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{avgdl})}$$

Relevance score for query

•
$$R(Q,D) = \sum_{i=1}^{10} R(q_i,D) \times S(q_i)$$

Vertical Incorporating

Vertical Result Ranking

• Vertical importance based on subtopic candidate score

$$I(v) = \alpha \cdot S\text{-}score(v)$$

- v: a type of vertical intent
- S score(v): the score of the subtopic which contains this vertical intent
- α : importance weight, different for different types of verticals
- Combination of R(Q, D) and I(v)

Vertical Incorporating

Vertical Result Ranking

• Vertical importance based on subtopic candidate score

$$I(v) = \alpha \cdot S\text{-}score(v)$$

- v: a type of vertical intent
- S score(v): the score of the subtopic which contains this vertical intent
- α : importance weight, different for different types of verticals
- Combination of R(Q, D) and I(v)

Vertical Incorporating Results

RUNNAME	D#-nDCG (unclear topics)	nDCG (clear topics)	D#-nDCG+nDCG (all topics)
THUIR-QU-1A	0.6677	0.5756	0.6594
THUIR-QU-2A	0.6664	0.5652	0.6573
THUIR-QU-1B	0.6594	0.5416	0.6488
THUIR-QU-2B	0.6632	0.5442	0.6525
THUIR-QU-3A	0.6429	0.5506	0.6346

Thank you!

chenye617@gmail.com www.thuir.cn

