## IMC at the NTCIR-12 IMine-2 Query Understanding Subtask

Jiahui Gu, Chong Feng, Yashen Wang

School of Computer Science, Beijing Institute of Technology

{ gujh, fengchong, yswang }@bit.edu.cn

## INTRODUCTION

- Propose a novel framework of QENEW that is Query Expansion based on New-Word Extraction Algorithm
  - The extracted new words, whether they exit in the available lexicon or not, are considered as query expansion terms. Then subtopics are generated by linear concatenation of the original query and expansion words
    - ✓ For example, string "电影院 (Cinema)" isn't viewed as a word. On the contrary, it's just a sequence of characters at the beginning of our algorithm
  - External Chinese corpus are utilized and crawled from Baidu, Google and Bing
    - K-means algorithm and Topic Model are applied in experiments

### **OVERVIEW OF THE FRAMEWORK**





#### Dataset

- ➤ C<sub>0</sub>: IMine-1 Chinese Web Corpus
- $\succ$   $C_1$ : Comging from the crawled top five documents in HTML webpages for Baidu, Google and Bing
- C2: Comging from the bottom of HTML webpages labeled with "Related searches"

#### **Further Process**

➤ K-means: Adopt the default settings to make diversity clustering of query subtopics

- Cluster number is between 5 and 10, select the highest frequency of term as the subtopic
- Topic model: Refers to two topic models to generate subtopic terms
  - Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process(HDP)
  - Set the topic number of LDA and HDP is 8 and use one topic words to describe the corresponding topic. Then, the top 10 topic words with the highest occurrence probabilities among the 16 words are the subtopics of the query

# EXPERIMENTS AND RESULTS

| RunID    | Submitted Runs                               |                                                                          | Description                                    |            | Results    |                                         |                    |                    |
|----------|----------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|------------|------------|-----------------------------------------|--------------------|--------------------|
|          | QENEV                                        | V                                                                        | Further Process                                |            | itestites  | Table1: Overall subtopic mining results |                    |                    |
|          | input                                        |                                                                          |                                                |            | RunID      | I-rec@10                                | D#-nDCG@10         | D-nDCG@10          |
| IMC-Q-C- | <b>1S</b> C <sub>1</sub> ,Co                 | QENEW's output and $C_2$ use K-means algorithm to generate the final run |                                                | IMC-Q-C-1S | 0.5685     | 0.5181                                  | 0.4677             |                    |
| IMC-Q-C- | <b>2S</b> $C_1, C_2, C_3$                    | QENEW's output is the final run                                          |                                                | IMC-Q-C-2S | 0.6172     | 0.5798                                  | 0.5424             |                    |
| IMC-Q-C- | $\mathbf{3S}  \mathbf{C}_1, \mathbf{C}_2$    | QENEW                                                                    | 's output is the final run                     |            | IMC-Q-C-3S | 0.4403                                  | 0.4349             | 0.4294             |
| IMC-Q-C- | 4 <b>S</b> C <sub>1</sub> ,C <sub>2</sub> ,C | QENEW<br>Ranking                                                         | 's output is the final run.                    | lliency    | IMC-Q-C-4S | <b>0.6240</b> 3/16                      | <b>0.5869</b> 2/16 | <b>0.5498</b> 2/16 |
|          |                                              | feature, t                                                               | hat is $\alpha_1 = 1, \alpha_2 = \alpha_3 = 0$ | luciney    | IMC-Q-C-5S | 0.4325                                  | 0.3890             | 0.3456             |
| IMC-Q-C- | <b>5S</b> C <sub>1</sub> ,Co                 | QENEW<br>to genera                                                       | 's output and $C_2$ use topi te the final run. | c model    |            |                                         |                    |                    |

### CONCLUSIONS

Generate query expansion terms based on new words extraction theory
The method employ the information entropy theory and statistical language knowledge to measure the words' features