KDEIM at NTCIR-12 IMINE-2: Intent Mining Through Diversified Ranking of Subtopics Md Zia Ullah, Md Shajalal, and Masaki Aono **Knowledge Data Engineering and Information Retrieval Laboratory** Toyohashi University of Technology, Toyohashi, Japan

Introduction

Motivation:

Problem with Web Search:

- Ambiguous, vague, or broad queries
- Diverse intents behind the same query
- Heterogeneous information of query
- Popular intent dominates in the search results

Challenges:

- Mining diverse subtopics of the query
- Predicting relevant verticals of the subtopic e.g. Query: Pluto, Subtopic: Pluto picture, Vertical: image and web

Our Goal:

- Identifying diversified subtopics covering intents of the query
- Classifying subtopic into vertical intents

Subtopic Mining Framework

Candidate Subtopics:

Resources

- Bing query suggesions and completions
- Google query completions
- Yahoo query completions

Feature Extraction:

- Term frequency based features (DFH, PL2, BM25, etc.)
- Language modeling based features (KL, QLM-JM, SLM-JM, etc.)
- Lexical features (Edit distance, Term overlap, etc.)
- Web hit count based features (NHC, PMI, etc.)

Feature Selection:

Optimization function of Elastic Net:

$$\min_{\beta_0,\beta} (\frac{1}{2M} \sum_{i=1}^{M} (y_i - \beta_0 - X_i^T \beta)^2 + \lambda \sum_{j=1}^{p} (\frac{(1-\alpha)}{2} \beta_j^2 + \alpha ||\beta_j||))$$

Relevance Estimation:

Linear ranking model is employed to estimate relevance as follows:

 $rel(q,s) = \sum w_k \cdot f_k(q,s)$

- **Random forest** is utilized to estimate feature importance w_k
- N is the number of selected features.

Figure 2: A Vertical Oriented Subtopic Mining Framework

Vertical Selection:

- ► Verticals:
 - Web, Image, News, QA, Encyclopedia, and Shopping
- Word vectors:

Subtopic Diversification:

Diversifying subtopics by balancing relevance and novelty:

Experiments and Evaluation

 $s_i^* = \arg \max_{S_i \in R \neq C_i} [\gamma rel(q, si) + (1 - \gamma) novelty(s_i, C_i)]$

 $novelty(s_i, C_i) = -\max_{s' \in C_i} cosine(s_i, s')$

 $\gamma \in [0, 1]$ is a combining parameter.

novelty(s_i, C_i) indicates the novelty of subtopic s_i given the set C_i

• 300-dimensional embedding from word2vec (Google News Corpus)

Vertical representatives:

• Image vertical: Photo, Album, Gallery, and Artwork

Vertical vector:
$$v_v = \frac{1}{L} \sum_{l=1}^{L} t_i$$
 Subtopic vector: $v_s = \frac{1}{L} \sum_{l=1}^{L} t_l$

If $cosine(v_s v_v) \ge 0.75$, subtopic s is a type of vertical v

Comparison with IMINE-2 participants:

Dataset:

Training: NTCIR-10 INTENT-2 English Testing: NTCIR-12 IMINE-2 English

Subtopic Mining Subtask:

Runs	I-rec@10	D-nDCG@10	D#-nDCG@10
KDEIM-Q-E-1S	0.7556	0.6644	0.7100
KDEIM-Q-E-2Q	0.7556	0.6644	0.7100
KDEIM-Q-E-3Q	0.7458	0.6472	0.6955
KDEIM-Q-E-4S	0.7484	0.5645	0.6565

Query Understanding with Vertical

Runs	V-score	QU-score
KDEIM-Q-E-2Q	0.3014	0.5057
KDEIM-Q-E-3Q	0.2931	0.4948

Runs	I-rec@10	D-nDCG@10	D#-nDCG@10
KDEIM-Q-E-1Q	0.7556	0.6644	0.7100
ruicir-Q-E-5Q	0.7502	0.6694	0.7098
HULTECH-Q-E-1Q	0.7279	0.6786	0.7033
ruicir-Q-E-4Q	0.7601	0.5096	0.6348

Conclusion

- Proposed a method for mining diversified subtopics
- Proposed a method for vertical selection exploiting word embedding
- Language modelling and query independent features are effective
- Diversification penalize the noisy and redundant subtopics

Future Work

- Extracting candidate subtopics from other resources
 - Top retrieved documents, Wikipedia, Knowledge graph.
- More semantic features for estimating relevance and novelty
- Effectively using word embedding for vertical classification
- Search result diversification using the mined subtopic and vertical