YJST at the NTCIR-12 IMine-2 Task

Yasuaki Yoshida, Hideyuki Maeda, Tatsuhiro Niwa, Sumio Fujita (Yahoo Japan Corporation) {yayoshid,hidmaeda,tniwa,sufujita}@yahoo-corp.jp

Basic Idea

To obtain diversified and ranked subtopic lists, we refined candidate subtopics from our base system by using co-click, co-session, and co-topic relations.

To identify vertical labels of ranked subtopics, we trained GBDT learner using several complex features.

※ D#−nDCG score simulation

To reveal the characteristics of D#-nDCG, we examine how D#-nDCG with various Qrels behaves against the results by various strategies. (Qrels include some intents for each given query as correct intents with probability p(i|q), and each intent includes some subtopics as correct data)

- Generate Correct Qrels with various p(i|q) patterns
- <u>The # of correct intents</u>: 2, 3, 4, 5, 6, 7, 8, 9, 10
- The shape of wave when sorted by p(i|q) descent: linear, cliff (all p(i|q) are either minimum or maximum, we try all possible cliff positions)
- <u>The ratio of maximum p(i|q) to minimum p(i|q)</u>: 1.0, 1.1, 1.2, ..., 1.9,

Subtopic Mining Method

- Subtopic filtering extensions
- We use 3 relations described below to filter "similar" subtopics:
- F₁. <u>Co-Click Relations</u> (from base system)
- F₂. <u>Co-Session Relations</u>
- F₃. <u>Co-Topic Relations</u>

2.0, 3.0, 4.0, ..., 9.0, 10.0

EXAMPLES:

- Generate Subtopics with different strategies
- major-only: Select 10 subtopics which include only most major intent.
- <u>full-intent</u>: Select 10 subtopics which include 10 intents.
- <u>diverse</u> X: Select 10 subtopics which include X intents. Each intent has the same # of subtopics.
- <u>major-main</u> X: Select 10 subtopics which include X intents. The most major intent has (11-X) subtopics and other intents have 1 subtopic. **EXAMPLES:**

diverse_5 pattern

major-main_5 pattern

Additional Extension

Blending Q1 and Q3 to create a run similar to "major-main" patterns. The major-main pattern always has highest score under these conditions. (🔆 experimentally confirmed, the definition of "major-main" and details of the experiments are shown in upper right.)

- if the # of "correct intents" is less than or equal to 10.
- if all of gains for correct subtopics are 1.
- if D#-nDCG = 0.5 D-nDCG + 0.5 I-rec

"Filter Rule 2" make Q3-5 similar to full-intent or diverse_X patterns, not to major-main_X patterns. So we create additional extension to imitate majormain_X form:

Experimental Result

major-main_X achieved the highest score with respect to the all thus generated Qrels, so major-main_X is the "ideal" pattern for D#-nDCG.

Vertical Identification Method

- GBDT (Multi-label)
- 3 kinds of features for each vertical
- 1. Vertical Search Feature (VSF)

B_x : top X subtopics are the same as Q1 (similar to major-only), rest (10–X) subtopics are selected from Q3 (similar to full-intent or diverse X).

Experimental Results (D#-nDCG)

- Non-filter run was the best and applying filters harms D#-nDCG.
- Additional extension runs, marked B_x , outperform our official runs significantly.

Run	Extension	D#-nDCG	Run	Extension	D#-nDCG
Blend7	B ₇ with Q1,Q3	0.5683	Blend4	B ₄ with Q1,Q3	0.5641
Blend8	B ₈ with Q1,Q3	0.5682	Q1(=Q2)	Nothing	0.5637
Blend9	B ₉ with Q1,Q3	0.5670	Blend3	B_3 with Q1,Q3	0.5599
Blend5	B ₅ with Q1,Q3	0.5663	Blend2	B ₇ with Q1,Q3	0.5576
Blend6	B ₆ with Q1,Q3	0.5660	Q3(=Q4,5)	F_1, F_2, F_3	0.5554

2. <u>Statistical Language Model Features (SLMS)</u> (except Web)

3. Random Walk Features (RWF)

- Total score is:

 $score(c_i) = GBDTscore(c_i) + b_i$ b_i : threshold for each vertical - b_i is also learned for each vertical - Change the # of iterations to generate runs to submit

Experimental Result (V-score)

Run	Subtopic Mining Filter	# of iterations	V-score
Q1	Nothing	N (# to converge b _i)	0.5336
Q2	Nothing	N / 2	0.4869
Q3	F_1, F_2, F_3	0	0.3318
Q4	F_{1}, F_{2}, F_{3}	N / 2	0.4275
Q5	F_{1}, F_{2}, F_{3}	Ν	0.4831