

YJST at the NTCIR-12 MobileClick-2 Task

Yuya Ozawa Taichi Yatsuka Sumio Fujita (Yahoo Japan Corp.) {yozawa,tyatsuka,sufujita}@yahoo-corp.jp

iUnit Ranking Introduction

We rank each iUnit by a generative model based on Query and background Language Models.

Method

iUnit Summarization Introduction

We use a word embedding representation to iUnit/intent matching.

Method

LM-Based two layer summarization

1. iUnits are ranked based on the

Probability of generating each iUnit is estimated by

- Query LM based on query relevant documents and Background LM based on non relevant documents.
- Models are computed using the title and body fields of provided index data.

Ranking Scores

Dirichlet prior smoothing Uni-gram and Bi-gram models Uni-gram model

 $P(w|q) = \frac{N_{D_q,w} + \mu P(w|o)}{N_{D_q} + \mu}$ $score(u,q) = \sum \ln P(w|q)$ $w \in W_u$

language modeling methods.

- 2. The top-ranked iUnits are put into the first layer until the length limit X.
- 3. Lower-ranked iUnits are matched against each intent and put into the second layer of the matched intent according to the matching score. 4. Each layer is filled until the text span
 - exceeds the pre-defined length limit.

Matching Scores

Set based Intent Matching (organizer's implementation)

 $Sim_{set}(u,i) = \frac{|W_u \cap W_i|}{|W_i|}$

**Wx* : the set of words contained in *x*

Word Embedding based Intent Matching (our proposal)

$$Sim_{emb}(u,i) = \cos(Emb_u, Emb_i)$$

 $Emb_u = \sum_{w_u \in W_u} Emb_{w_u}$, $Emb_i = \sum_{w_i \in W_i} Emb_{w_i}$

Bi-gram model

Experiments Training Results

Run description	Run detail	Q-Measure
Random ranking (ORG-R)	—	0.7201
Log Odds Ratio (ORG-L)	Laplace smth	0.7901
Vector Space Cosine	term freq	0.7715
Vector Space Cosine	Boolean	0.78
Vector Space+Background	Boolean	0.8003
Uni-gram Dirichlet priors	$\mu=1, lpha=1$	0.8347
Uni-gram Dirichlet priors	$\mu=0.5, lpha=1$	0.8352
Bi-gram Dirichlet priors	$\mu=1, lpha=0$	0.8399
Mixture Dirichlet priors	$\mu=1, lpha=0.5$	0.8375
KL-Divergence	Laplace smth	0.8108
Pitman-Yor	$\mu=1,\delta=0.1$	0.8321
iUnit LM	Dir prior $\mu = 1$	0.8258
iUnit LM+cotopic	Dir prior $\mu = 1$	0.8343
iUnit LM+coclick	Dir prior $\mu = 1$	0.8339
iUnit LM+cosession	Dir prior $\mu = 1$	0.8329
iUnit LM+chie	Dir prior $\mu = 1$	0.8345

**Embwx* : embedding of the word *wx*

Experiments

Results

Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
437	Addition	Log Odds Ratio LM	Emb+Cos	280	19.094
131	Official	KL-Div LM	Set based	280	21.0259
$173*{1}^*{2}$	Official	Dir priors LM	Emb+Cos	280	25.8498
231 * 2	Official	Dir priors LM	Emb+Cos	0	13.9927
324 * 2	Official	Dir priors LM	Emb+Cos	252	25.6084
419 *1	Addition	Dir priors LM	Set based	280	26.7036
442 * 1	Addition	Dir priors LM	Emb+Euclidean	280	26.6096

***1** : from #173, #419 & #442

- The vector similarity measure greatly affects the effectiveness of embedding based matching.
- The better usage of word embedding representation hopefully leads to more effective intent matching solutions.
- ***2** : from #173, #231 & #324

Test Results

Run description	Run detail	Q-Measure
Random Ranking (ORG-R)	_	0.7411
Log Odds Ratio (ORG-L)	Laplace smth	0.7269
Uni-gram Dirichlet priors	$\mu = 10, \alpha = 1$	0.8072
Bi-gram Dirichlet priors	$\mu=1, lpha=0$	0.7965
Mixture Dirichlet priors	$\mu = 1, lpha = 0.5$	0.8029
Uni-gram Dirichlet priors	$\mu=0.5, lpha=1$	0.8081

Conclusions

We used Dirichlet prior smoothing in the LM-Based iUnit ranking approach.

- We carried out several experiments examining : lacksquareUni-gram/Bi-gram iUnit/query language models.
- We achieved Q-score of 0.807 in a test run using a Uni-gram model.

- Reducing the first layer allocation leads to the decline in M-measure.
- It seems that the default limit is near optimum.

Conclusions

- A new intent matching method using word embedding. - This leads to a finer allocation of relevant iUnits to subtly related intents in the 2nd layer.
- We achieved M-measure of 25.8498.
 - This is the **best** of official runs of the subtask.
- Further improvement is possible,
 - with more effective similarity matching.