YJST at the NTCIR-12 MobileClick-2 Task

Yuya Ozawa Taichi Yatsuka Sumio Fujita

Agenda

- Introduction
- iUnit ranking subtask
 - Related works
 - Method
 - Experiments
 - Conclusion
 - Future work
- iUnit Summarization subtask
 - Related work
 - Method
 - Experiments
 - Conclusion
 - Future work

Introduction

- Mobile device
 - Limited display space of the devices
 - Web search services should be optimized to the mobile environments
- Motivations
 - Effectiveness of the language model based text matching
 - Effectiveness of dimension reduction approaches including distributional word representation
- Subtasks
 - Japanese iUnit Ranking subtask
 - Japanese iUnit Summarization subtask

iUnit Ranking Task

Related work

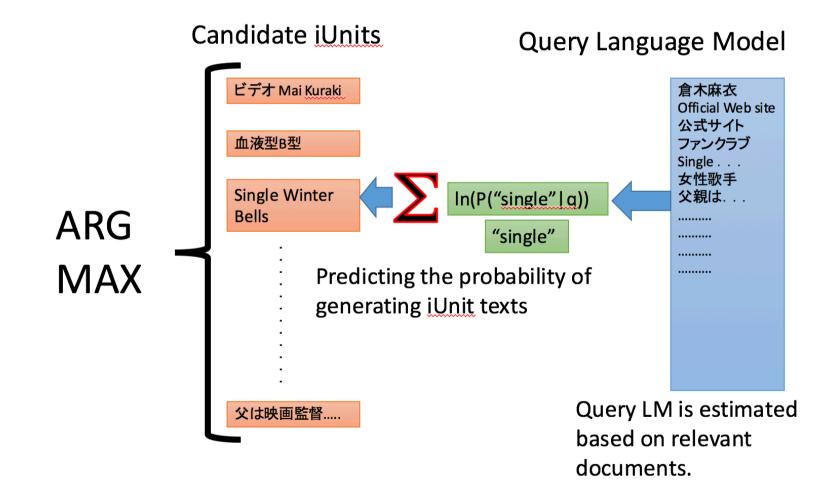
- Language Modeling in information retrieval
 - Language Modeling as a probabilistic distribution that captures statistical regularities of language generation.
 - In retrieval, document ranking according to the likelihood of generating the query based on each document model.
- Related approaches
 - Dirichlet prior smoothing: Zhai and Lafferty 2004.
 - Pitman-Yor smoothing: Momtazi and Klakow 2010.

Japanese iUnit Ranking METHOD

iUnit ranking subtask

- Language Modeling based approach
 - Score of each iUnit: probability of generating iUnit given a query language model
- Model
 - Query relevant Documents : $D = \{d_1, d_2, ..., d_n\}$
 - Document represented by word sets : $W = \{w_1, w_2, ..., w_n\}$
 - Query model : P(w|q)
 - Background (query non relevant) model : P(w|o)
- Data
 - Title and body in provided index data

Overview of Our Language Model



Dirichlet prior smoothing

• Uni-gram Dirichlet prior smoothing

$$P(w|q) = \frac{N_{D_q,w} + \mu P(w|o)}{N_{D_q} + \mu}$$
$$score(u,q) = \sum_{w \in W_u} \ln P(w|q)$$

• Bi-gram Dirichlet prior smoothing

$$P_{bi}(w_{i,i+1}|q) = \begin{cases} \frac{N_{D_q,w_{i,i+1}} + \mu P_{bi}(w_{i,i+1}|o)}{N_{D_q} + \mu} & (w_{i,i+1} \in D_q) \\ \lambda P(w_i|q) & (otherwise) \end{cases}$$

$$score(u,q) = \sum_{\substack{w_i,w_{i+1} \in W_u}} \ln P_{bi}(w_{i,i+1}|q)$$

$$u: \text{ hyper parameter}^{w_i,w_{i+1} \in W_u}$$

- μ: hyper parameter⁺¹
- λ : down weighting factor

Other approaches

• KL Divergence

$$score(u,q) = D(P(w|q)||P(w|o)) = \sum_{w \in W_u} P(w|q) \ln \frac{P(w|q)}{P(w|o)}$$

• Pitman-Yor smoothing

$$P(w|q) = \frac{N_{D_q,w} - \delta + (\mu + \delta V_{D_q})P(w|o)}{N_{D_q} + \mu}$$
$$score(u,q) = \sum_{w \in W_u} \ln P(w|q)$$

- V_{Dq} : vocabulary size in D_q
- δ: hyper parameter

Japanese iUnit Ranking EXPERIMENTS

Experiments

- Japanese iUnit Ranking task
- Training run results
 - Dirichlet prior smoothing and other approaches
- Test run results
 - Dirichlet prior smoothing

Training run results

Run description	Run detail	Q-Measure
Random ranking (ORG-R)	_	0.7201
Log Odds Ratio (ORG-L)	Laplace smth	0.7901
Vector Space Cosine	term freq	0.7715
Vector Space Cosine	Boolean	0.78
Vector Space+Background	Boolean	0.8003
Uni-gram Dirichlet priors	$\mu=1, lpha=1$	0.8347
Uni-gram Dirichlet priors	$\mu=0.5, lpha=1$	0.8352
Bi-gram Dirichlet priors	$\mu=1, lpha=0$	0.8399
Mixture Dirichlet priors	$\mu=1, lpha=0.5$	0.8375
KL-Divergence	Laplace smth	0.8108
Pitman-Yor	$\mu=1,\delta=0.1$	0.8321
iUnit LM	Dir prior $\mu = 1$	0.8258
iUnit LM+cotopic	Dir prior $\mu = 1$	0.8343
iUnit LM+coclick	Dir prior $\mu = 1$	0.8339
iUnit LM+cosession	Dir prior $\mu = 1$	0.8329
iUnit LM+chie	Dir prior $\mu = 1$	0.8345

Training run results

Run description	Run detail	Q-Measure
Random ranking (ORG-R)	_	0.7201
Log Odds Ratio (ORG-L)	Laplace smth	0.7901
Vector Space Cosine	term freq	0.7715
Vector Space Cosine	Boolean	0.78
Vector Space+Background	Boolean	0.8003
Uni-gram Dirichlet priors	$\mu = 1, \alpha = 1$	0.8347
Uni-gram Dirichlet priors	$\mu=0.5, lpha=1$	0.8352
Bi-gram Dirichlet priors	$\mu=1, lpha=0$	0.8399
Mixture Dirichlet priors	$\mu=1, lpha=0.5$	0.8375
KL-Divergence	Laplace smth	0.8108
Pitman-Yor	$\mu=1,\delta=0.1$	0.8321
iUnit LM	Dir prior $\mu = 1$	0.8258
iUnit LM+cotopic	Dir prior $\mu = 1$	0.8343
iUnit LM+coclick	Dir prior $\mu = 1$	0.8339
iUnit LM+cosession	Dir prior $\mu = 1$	0.8329
iUnit LM+chie	Dir prior $\mu = 1$	0.8345

Test run results

Run description	Run detail	Q-Measure
Random Ranking (ORG-R)	—	0.7411
Log Odds Ratio (ORG-L)	Laplace smth	0.7269
Uni-gram Dirichlet priors	$\mu = 10, lpha = 1$	0.8072
Bi-gram Dirichlet priors	$\mu=1, lpha=0$	0.7965
Mixture Dirichlet priors	$\mu=1, lpha=0.5$	0.8029
Uni-gram Dirichlet priors	$\mu=0.5, lpha=1$	0.8081

Test run results

Run description	Run detail	Q-Measure
Random Ranking (ORG-R)	—	0.7411
Log Odds Ratio (ORG-L)	Laplace smth	0.7269
Uni-gram Dirichlet priors	$\mu = 10, \alpha = 1$	0.8072
Bi-gram Dirichlet priors	$\mu=1, lpha=0$	0.7965
Mixture Dirichlet priors	$\mu = 1, lpha = 0.5$	0.8029
Uni-gram Dirichlet priors	$\mu=0.5, lpha=1$	0.8081

Conclusion

- We use Dirichlet prior smoothing in the LM-Based iUnit ranking approach
 - We carried out several experiments examining Uni-gram/Bi-gram iUnit/query language models
 - we achieved Q-score of 0.807 in a test run using a Uni-gram model

Future work

- Our approach only uses the divergence between query and background language models
- Adopt supervised learning to rank iUnits using several features including:
 - textual
 - nontextual

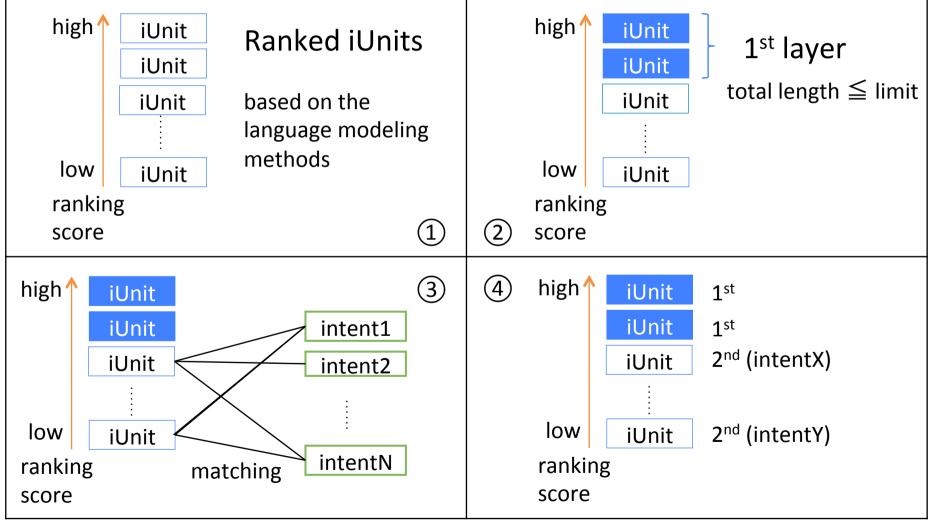
iUnit Summarization Task

Related Work

• Efficient estimation of word representations in vector space. (T. Mikolov et al., ICLR 2013)

Japanese iUnit Summarization **METHOD**

LM-based Two-layer iUnit Summarization Baseline



LM-based Two-layer iUnit Summarization Baseline

• The computation of the iUnit score against each second layer intent as follows:

$$Score(u,i) = R(u) \cdot Sim(u,i)$$

- *u* , *i* : iUnit and intent
- *R(u)* : the iUnit ranking score from the ranking method
- *Sim(u, i)* : the score of intent matching

Set based Intent Matching

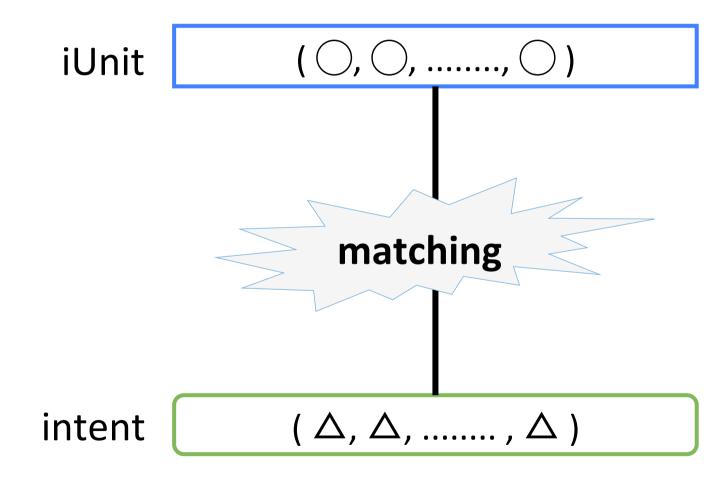
asymmetric similarity function (organizer's baseline)

$$Sim_{set}(u,i) = \frac{|W_u \cap W_i|}{|W_i|}$$

• *Wx* : the set of words contained in *x*

 \bigotimes Simset(u, i) becomes 0 when there is no common word between u and i.

Word Embedding based Intent Matching



Word Embedding based Intent Matching

• iUnit embedding : *Embu*

$$Emb_u = \sum_{w_u \in W_u} Emb_{w_u}$$

- *Embwu* : embedding of the word *wu*.
- intent embedding : *Embi*

$$Emb_i = \sum_{w_i \in W_i} Emb_{w_i}$$

• *Embwi* : embedding of the word *wi*

Word Embedding based Intent Matching

• Simirality calculation :

 $Sim_{emb}(u,i) = \cos(Emb_u, Emb_i)$

- *cos(X,Y)* is cosine similarity.
- In Additional experiments
 - We also tried another similarity measure based on the Euclidean distance between vectors.

Japanese iUnit Summarization **EXPERIMENTS**

Parameters

• embedding training parameter

- data : given HTML's <body> without tag
- vector size : 200
- model : CBoW
- window size : 5
- implimentation : Google Code Archive word2vec
 - https://code.google.com/archive/p/word2vec/

Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
437	Addition	Log Odds Ratio LM	$\operatorname{Emb+Cos}$	280	19.094
131	Official	KL-Div LM	Set based	280	21.0259
173	Official	Dir priors LM	$\operatorname{Emb+Cos}$	280	25.8498
231	Official	Dir priors LM	$\operatorname{Emb+Cos}$	0	13.9927
324	Official	Dir priors LM	Emb+Cos	252	25.6084
419	Addition	Dir priors LM	Set based	280	26.7036
442	Addition	Dir priors LM	$\operatorname{Emb+Euclidean}$	280	26.6096

• Limit indicates the first layer length limit.

	Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
Γ	123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
	437	Addition	Log Odds Ratio LM	Emb+Cos	280	19.094
	131	Official	KL-Div LM	Set based	280	21.0259
	173	Official	Dir priors LM	$\operatorname{Emb+Cos}$	280	25.8498
	231	Official	Dir priors LM	Emb+Cos	0	13.9927
	324	Official	Dir priors LM	Emb+Cos	252	25.6084
Γ	419	Addition	Dir priors LM	Set based	280	26.7036
	442	Addition	Dir priors LM	Emb+Euclidean	280	26.6096

• Limit indicates the first layer length limit.

	Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
	123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
	437	Addition	Log Odds Ratio LM	Emb+Cos	280	19.094
	131	Official	KL-Div LM	Set based	280	21.0259
	173	Official	Dir priors LM	Emb+Cos	280	25.8498
	231	Official	Dir priors LM	Emb+Cos	0	13.9927
	324	Official	Dir priors LM	Emb+Cos	252	25.6084
Γ	419	Addition	Dir priors LM	Set based	280	26.7036
	442	Addition	Dir priors LM	Emb+Euclidean	280	26.6096

• Limit indicates the first layer length limit.

- Compare Embedding+Cosine method(#173) and set based method(#419) by query basis
 - 23 queries : #173 performed better
 - 4 queries : performed equally
 - 73 queries : #419 performed better

S	Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
	123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
	437	Addition	Log Odds Ratio LM	Emb+Cos	280	19.094
	131	Official	KL-Div LM	Set based	280	21.0259
	173	Official	Dir priors LM	Emb+Cos	280	25.8498
	231	Official	Dir priors LM	Emb+Cos	0	13.9927
	324	Official	Dir priors LM	Emb+Cos	252	25.6084
	419	Addition	Dir priors LM	Set based	280	26.7036
	442	Addition	Dir priors LM	Emb+Euclidean	280	26.6096

• Limit indicates the rst layer length limit.

Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
437	Addition	Log Odds Ratio LM	Emb+Cos	280	19.094
131	Official	KL-Div LM	Set based	280	21.0259
173	Official	Dir priors LM	Emb+Cos	280	25.8498
231	Official	Dir priors LM	Emb+Cos	0	13.9927
324	Official	Dir priors LM	Emb+Cos	252	25.6084
419	Addition	Dir priors LM	Set based	280	26.7036
442	Addition	Dir priors LM	$\operatorname{Emb}+\operatorname{Euclidean}$	280	26.6096

• Limit indicates the rst layer length limit.

- Compare Euclidean distance method(#442) and set based method(#419) by query basis
 - 44 queries : #442 performed better
 - 13 queries : performed equally
 - 43 queries : #419 performed better
- The vector similarity measure greatly affects the effectiveness of intent matching of word embedding based.
- This suggests that the better usage of word embedding representation leads to more effective intent matching solutions.

	Submit #	Run type	Ranking	Intent Matching	Limit	M-measure
Γ	123	ORG-T	Log Odds Ratio LM	Set based	280	17.4376
	437	Addition	Log Odds Ratio LM	Emb+Cos	280	19.094
	131	Official	KL-Div LM	Set based	280	21.0259
	173	Official	Dir priors LM	Emb+Cos	280	25.8498
	231	Official	Dir priors LM	Emb+Cos	0	13.9927
	324	Official	Dir priors LM	Emb+Cos	252	25.6084
Γ	419	Addition	Dir priors LM	Set based	280	26.7036
	442	Addition	Dir priors LM	$\operatorname{Emb+Euclidean}$	280	26.6096

• Limit indicates the rst layer length limit.

Conclusion

- We adopted a new intent matching method using word embedding representations.
 - This leads to a finer allocation of relevant iUnits to subtly related intents in the second layer.
- We achieved M-measure of **25.8498**.
 - the **best** of official runs of the Japanese iUnit Summarization Subtask
- Additional experiments suggest the possibility of further improvements.
 - with more effective similarity matching

Future Work

- Examining better word embedding representations
- Examining other similarity measures to vectorial matching
 - KL-divergence, Jaccard coefficient and so on
- Optimizing the strategy in view of M-measure

EOP