
Ranking and Summarization using word-embedding
at NTCIR-12 MobileClick Task

Shinsuke Yokoyama
Rakuten, Inc.

shinsuke.yokoyama@rakuten.com

Risa Kitajima
Rakuten, Inc.

risa.kitajima@rakuten.com

Sho Nakamura
Rakuten, Inc.

sho.nakamura@rakuten.com

Yu Hirate
Rakuten Institute of Technology

yu.hirate@rakuten.com

ABSTRACT
Our team’s approach is based on word-embedding. We converted
queries and iUnits to vectors using word2vec. To these generated
vectors, ranking-generation methods and summarization methods
are applied

Keywords
Word2vec, Learning to Rank, Information Retrieval, MobileClick

Team Name
R-Panda

Subtasks
Japanese iUnit Ranking

Japanese iUnit Summarization

1. INTRODUCTION
In real-world web search, the most of queries are short and has
insufficient information. We need to complement additional
information. That makes generation of search-ranking difficult. In
mobileclick2 task, not only query but also iUnit is a-bit-longer
short-text. This makes this task more difficult.
In short-text analysis, it’s common to compensate its context by
adding from external knowledge data. This time, we do it through
word2vec.
Since Mikolve published word2vec model [1], word-embedding
has been one of very popular topic in text mining field. Varieties
of its applications are reported in text-mining tasks. As Omer
Levy pointed out [2], word2vec has robust performance in many
benchmarks. This property is very useful to utilize data in web.

2. MODELS OF RANKING SUBTASK
(JAPANESE)
2.1 Query classification
In the training and test dataset, there are several mixed types of
queries, not they tend to be just randomized but categorized. We
began to divide the queries into the following seven classes in
training data

 Actors and musicians
 Politicians
 Athletes
 Particular places or stores
 Geological locations with purposes

 Common noun terms
 Natural sentences

As for test data, it doesn’t have politicians or particular places or
stores. We decided not to use these two classes to build a model.
Then by merging actors, musicians and athletes, we ended up with
keeping the following four classes both for training and test data:
famous people, places, common noun terms and natural sentences.

Based on the classification, we used them with two approaches.
One is simply dividing the training and test set by the query class.
The other is to add these classes as dummy variables to features
by 1-of-K representation.

2.2 Word2vec Feature Generation
To make word2vec model, Bing’s search result text are used as
external knowledge data. These search results include variety of
topics related to the queries; also the qualities of documents are
checked to some degree. Therefore, they have good quality for
external knowledge data. To build word2vec model, we use
gensim [4]. The following is the procedure.

1. Delete contents of “Script” and “Style” tag from HTMLs

2. Apply morphological analyzer (Mecab) and split it to the Part-
of-speech.

3. Filter out all the Part-of-speech other than noun.

4. Delete new-line among a document; Then feed them to
gensim’s word2vec API.

Most of queries and iUnits are split into multiple terms. When
calculating a vector of iUnits and queries, we simply use an
average vector of each term’s vector.

2.3 Ranking
2.3.1 Approach 1: Predicting importance by
Smoothing Method
It is widely known word2vec’s property that similar terms are
converted closer coordinates than non-similar terms. If we assume
that similar iUnits have close importance values, an importance of
iUnit is predicted by its neighbor’s importance. Based on this idea,
we use weighted average of k-nearest iUnits’ importance as
predicted value.
The Algorithm is
1. Classify target iUnit’s query (by method 2.1)
2. Select k-nearest iUnits (this time k=4) from iUnits whose

query is the same class as the target query.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

157

3. Calculate weighted average of those iUnits importance by
following expression.

With

2.3.2 Approach 2: Learning To Rank
Although iUnit is a short sentence, typical learning to rank
approaches should be able to be applied with generated features.
For iUnit Ranking Subtask, intent and intent probability are not
given. Thus, regardless of intent for each query, we directly learn
and predict global importance. We chose Random Forest [5] as a
rank generator from RankLib [6]. This depends on the ranker part
of MART [7].

2.4 Noise Cancellation
Looking into test data, compared to training data, there are more
noisy iUnits, which should not meet any of intents for the query.
We introduced two heuristic ways to displace them. Both of them
focus on the trailing part of iUnits. One is that the iUnits end with
some special symbols such as exclamation and question mark
supposing that these iUnits don’t give objective answers for the
user query. The other is that the last token of iUnit is honorific
term. Almost all of iUnits end with indeclinable words such as
noun, which mean they are not like sentences but bullet point
descriptions, especially honorific forms tend to be spam among
them on this particular dataset.

3. RESULTS OF RANKING SUBTASK
(JAPANESE)
In 2.2 process, we created word2vec model. With this model, we
converted each iUnit in training dataset to vector and use them as
input features. Figure. 1 shows the result.
Since we can’t know the importance of test dataset, all evaluation
here is based on test dataset. For smoothing approaches, we
applied leave-one-out cross validation per query: leave one query
and predicting its iUnits’ importance from the other queries’
iUnits. On the other hand for learning-to-rank approaches, 5-fold
cross validation were applied instead because leave-one-out takes
time but it performed almost the same well. This means out of
5,000 queries 1,000 are used for test and the remaining are for
training set. For comparison, we generated LDA features and
applied the same learning to rank algorithm.

3.1 Discussion
Table 1. Q-measure of learning word2vec features by

smoothing model

 Q-measure

Random baseline 0.7728

No query class 0.8385

Seven query class separately predicted 0.8250

As for the smoothing model, we began with predicting iUnits’
importance from the same query’s iUnits. The Q-measure value is
0.888 in seven query-classes model. But when predicting another
query’s importance from the queries in the same class, the result is
much lower q-measure value, 0.838. This means that selecting
similar text by word2vec model works to a certain degree. But
when a query is changed, having similar word2vec vector is not
enough evidence to have similar importance. Although two
queries are in a same class, the tendencies of high-importance
iUnit are very different. In general text search, features that
calculated using both query and iUnit could compensate this
problem, but our model doesn’t have this type of features.
At the same time, this smoothing method highly depends on the
density of data. If there are some similar queries in training data,
the prediction would be more accurate. But if not, the advantages
of our model are lost. This time, training data set have only 100
queries, and most of queries are combination of multiple
keywords. This time, the number of queries in training dataset is
too small to make this model work fine. The direct dependence to
number of training data is one of the bottlenecks of the smoothing
based prediction model.

Table 2. Q-measure of learning word2vec features by
learning-to-rank

 Q-measure

Word2vec, 100 features 0.8527

Word2vec, 100 features separately
learned inside the query class 0.8380

Word2vec 100 + class representative
features 0.8586

LDA features 0.8228

LDA features learn inside the query class 0.8326

Table 2 shows the results of the learning-to-rank approaches. The
q-measure scores show the effectiveness of this approach. In
word2vec, the meaning of each vector is not clear, but learning to
rank algorithms learned the relations between them and
importance. Compared to the traditional features like TF-IDF, the
each vector is not strong, but those vectors can help task the
sematic search.
When compared word2vec based learning to rank with LDA
based one, word2vec features results in higher scores than LDA.
This is partially because LDA is not robust to noises. A web-page
contains not only an article, but also ads and UI parts like footer,
header. Those elements prevent LDA from working as it designed.
On the other hand, word2vec learn the vector by keywords around
it. So those elements don’t affect result if the same keywords
don’t appear in the UI components.
As for using query’s class or not, the number of training data is a
problem If we divided 100 queries into 7 classes, the average
number of queries and iUnits in each group is less than 15 and

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

158

770. It’s not enough number for learn something from 100
features data.

4. MODELS OF SUMMARIZATION
SUBTASK (JAPANESE)
Summarization task is divided into three parts; assigning each
iUnit to intent, calculation of penalized importance of iUnits and
iUnits layering.

4.1 Intent Labeling
In iUnit ranking subtask, iUnits are converted to vectors. In the
same way, intents are converted to vectors. For each iUnit, one
intent is assigned based on cosine similarity between the vectors.

4.2 Calculation of importance
In iUnit ranking sub task, we calculated each iUnit’s predicted
importance. Since each iUnit’s utility has decay according to their
position, using shorter iUnit results in better M-measure score
than using longer one, if their importance is the same. Thus, to
take decay factor into consideration, we calculate each iUnit’s
importance using its length of iUnit and ranking sub task’s result.
Given a constant parameter , the weight calculated by iUnit
ranking sub task for iUnit i, and length of iUnit , the re-
calculated weight of iUnit i is given by:

We set = 0.3 heuristically. This calculation makes the weight of
longer sentence smaller while importance of shorter sentence
larger by dividing total length of summarization by the length of
iUnit. 280 is the length limitation of characters for this Japanese
task.

4.3 IUnit Layering
Next we determine layer of each iUnit: which iUnit should be
listed on the first layer and the second layer. Here we assume that
iUnits that have large standard deviation between similarity score
to and each intent should be listed on the second layer, because
those sentences have large similarity to certain intent and we can
put them under the link from the intent. Here we set 0.05 as
threshold heuristically and if the standard deviation is higher than
0.05 then the iUnit is put on second layer, while if the standard
deviation is lower than 0.05 then the iUnit is put on first layer.
Then we calculate each weight for the intent itself by calculating
average of length-normalized weight of all intents, which are
assigned to the intent. On both of first and second layers, iUnits
are sorted by its length-normalized weight.

5. RESULTS OF SUMMARIZATION
SUBTASK (JAPANESE)
5.1 Results
Table.3 shows that M-measure for our proposed method and other
baseline methods. Our proposed method gives higher score on M-
measure rather than baseline methods in average of all queries.

Table 3. Mean of M-measure

 Score

Proposed method 18.4203

LM-based two-layer baseline 17.4376

Random baseline 15.0373

LM-based baseline 12.799

Table 4 and Table 5 show five queries which show highest and
lowest M-measure, respectively. As for MC2-J-0083, iUnit and its
intent is missing in dataset. Other four low M-measure score on
queries are classified to “geological locations with purposes”.

Table 4. Five highest M-measure queries

Table 5. Five lowest M-measure queries

5.2 Discussion
As for MC2-J-0034, all iUnits are listed on the second layer. It
means our threshold, which defines if each iUnit should be listed
on the first layer or the second layer, sometimes too small to
divide iUnits into two layers. If we loosen restriction for iUnit to
be put on the first layer by setting larger value as threshold, more
iUnits are listed on the second layer in this case. On the other
hand, as for MC2-J-0042, 11 iUnits are chosen to be listed on the
first layer with same threshold.

Here, we focus on the number of intents for each query. The
average number of intents for queries listed on Table. 4 is 13.25,
while the one for queries listed on Table. 5 is 2.6. From this, we
suppose that our threshold 0.05 is fit if the query has few intent,
and not adequate for the case that the query has many intents.
Although we applied the same value as threshold for all queries
here, it is assumed that we can improve our proposed method by

Qid Query M-measure

MC2-J-0042 52.6187

MC2-J-0004 41.54

MC2-J-0022 40.7866

MC2-J-0061 Ups 40.2946

MC2-J-0073 39.9209

Qid Query M-measure

MC2-J-0083 0.0000

MC2-J-0034 3.3758

MC2-J-0035 4.6622

MC2-J-0038 4.7315

MC2-J-0037 4.8742

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

159

introducing logic to decide it depending on dispersion of
similarity between intent and iUnits.

6. CONCLUSION
We described our approach in this paper. In the ranking subtasks,
the features are generated from query classification and word2vec.
The 1st model are based on smoothing based prediction, the 2nd
model is based on MLR. The both achieved higher score than the
baseline.
In the summarization subtasks, the features are based on the
ranking subtask’s result and word2vec, also result in higher score
than the baseline.

7. ACKNOWLEDGMENTS
8. REFERENCES
[1] Mikolov, Tomas, Sutskever, Ilya, Chen, Kai,

Corrado,Greg, and Dean, Jeffrey. 2013.

Distributed representations of phrases and their
compositionality. In Advances on Neural Information
Processing Systems

[2] Omer Levy, Yoav Goldberg, and Ido Dagan. 2014.
Improving Distributional Similarity with Lessons Learned
from Word Embeddings. TACL 2015.

[3] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.
Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=
http://doi.acm.org/10.1145/161468.16147.

[4] https://radimrehurek.com/gensim/
[5] L. Breiman. 2001. Random Forests. Machine Learning 45

(1): 5-32
[6] https://sourceforge.net/p/lemur/wiki/RankLib/
[7] J.H. Friedman. 2001. Greedy Function Approximation: A

Gradient Boosting Machine. The Annals of Statistics, 29(5):
1189-1232

Figure 1. iUnits in word2vec space
IUnits vectors are reduced to two dimensional space by applying t-SNE, commonly used dimension reduction technique.
The sizes of marks show its importance, the colors of text-boxes corresponds to its query class.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

160

