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ABSTRACT
This paper describes the participation of our MCAT search
system in the NTCIR-12 MathIR Task. We introduce three
granularity levels of textual information, new approach for
generating dependency graph of math expressions, score nor-
malization, cold-start weights, and unification. We find that
these modules, except the cold-start weights, have a very
good impact on the search performance of our system. The
use of dependency graph significantly improves precision of
our system, i.e., up to 24.52% and 104.20% relative improve-
ments in the Main and Simto subtasks of the arXiv task,
respectively. In addition, the implementation of unification
delivers up to 2.90% and 57.14% precision improvements
in the Main and Simto subtasks, respectively. Overall, our
best submission achieves P@5 of 0.5448 in the Main subtask
and 0.5500 in the Simto subtask. In the Wikipedia task, our
system also performs well at the MathWikiFormula subtask.
At the MathWiki subtask, however, due to a problem with
handling queries formed as questions that contain many stop
words, our system finishes second.

Keywords
Mathematical Formula Search, MathML Indexing, Path-
based Encoding, Hash-based Encoding, Textual Informa-
tion, Dependency Graph, Score Normalization, Cold-Start
Weights, Score Boosting, Unification

Team Name
MCAT

Subtasks
MathIR arXiv Main Task (English), optional MathIR
arXiv Formula Similarity Task (English), optional MathIR
Wikipedia Task (English), optional MathIR Wikipedia For-
mula Browsing Task (English)

1. INTRODUCTION
The objective of NTCIR-12 MathIR Task [9] is to build

MIR systems which enable users to search for a particular
math concept using math formulae. Given a query which
contains a target formula expressed in MathML and several
related keywords, each participating system in this task is
expected to return a ranked list of the relevant retrieval units
containing formulae matching the query. Since this task has
the same aim and similar searching scenarios as the previous
NTCIR-11 Math-2 Task [1], our system [5] from the previous

task is also applicable for the current task, but with several
limitations as follows.

1. Our system employed only one index, where math ex-
pression is the retrieval unit. This did not work quite
well, since the judgement process allowed paragraph,
instead of only math expression, as a retrieval unit.

2. Our system stored multiple types (fields) of infor-
mation for each math expression, but there was no
score normalization applied for each information type.
Therefore, we assumed that each type has the same
importance.

3. Our technique to encode math expressions was too
flexible. Given a math expression represented in the
MathML format, this technique generated index terms
based on paths from each element in the MathML to
each of its descendants. As a consequence, two math
expressions were considered matching, with a certain
score, even when there was only a symbol appearing at
the same location in the MathML tree representation
of both expressions.

In the NTCIR-12 Math Task participation, we attempt to
address the issues defined above. The contribution of this
paper is as follows:

• Investigate the impact of indexing three levels of infor-
mation (math, paragraph, and document) and combin-
ing them using weights obtained from multiple linear
regression method to handle limitation 1 and 2.

• Investigate whether the effectiveness of text-enriching
procedure using dependency graph, which was shown
by our previous works [2, 5], are maintained when we
have already included paragraph and document level
textual information in our system.

• Investigate the effectiveness of unification as post-
processing to handle limitation 3.

This rest of this paper is organized as follows. Section 2
describes the overview of our system, including brief expla-
nation about encoding of math expression and extraction
of textual explanation for each expression. Subsequently, it
presents our approach in combining all the indexed infor-
mation for the searching purpose. The description of uni-
fication method we applied as a post-processing tool ends
this section. Next, Section 3 and 4 present the results of
our submitted results. Finally, our conclusions are given in
Section 5.
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2. OUR APPROACH
Our search system is composed of three main building

blocks as follows.

1. Pre-processing

• encode math expressions

• extract textual information

• extract dependency graph of math expressions

2. Indexing math expressions

3. Searching and Ranking

• combine all the indexed types of information

• perform unification to the initial ranked list

Figure 1 shows the overview of our system. The retrieval
unit returned by our system is in the math expression level.
This output is suitable for Wikipedia task, but not for arXiv
task, which expects that the output is in the paragraph level.
In the arXiv task, to obtain a ranked list of paragraphs for
each given query, we generate a score for each paragraph by
taking the highest similarity score from all expressions found
in them. This section focuses on describing the Searching
and Ranking part of our system. We will only describe the
pre-processing and indexing parts briefly, since the detailed
explanation can be found in our previous works [2, 3, 5, 8].

2.1 Encoding Math Expressions
There are two techniques we employ to encode math ex-

pressions: path-based and hash-based techniques. Both
techniques assume that math expressions are in the MathML
format and treat each expression as a tree data structure.

Path-based Encoding Technique
Given a math expression, this encoding technique produces
three types of information: opaths (ordered paths), which
stores the vertical path of each node in the math expression
and preserve the ordering information, upaths (unordered
paths), which stores the same content as opaths, but with-
out ordering information, and sisters, which stores the
sibling nodes in each subtree. This encoding technique is
used at both index-time and query-time. While opaths and
upaths are generated for every subtree of the math expres-
sion being indexed, at query time, however, opaths and
upaths always start from the root of the math expression. In
addition, this encoding-technique handles each free variable
qvar found in the queries by simply omitting any vertical
paths, i.e. opaths and upaths, directing to it and excluding
it from any sisters.

Hash-based Encoding Technique
In addition to the path-based technique, we apply hash-
based technique as well to encode math expressions. There
are three algorithms we use here, namely subtree hash, mod-
ular trick, and SIGURE hash, and their brief descriptions
are as follows.

• subtree hash is designed to capture the implicit seman-
tics represented by variable names. This algorithm
is intuitively a depth-first pre-order traversal to con-
struct hash codes, visiting each node oncee, and at
each node having to combine (already computed) hash

codes from children. The output from this algorithm is
a feature set consisting of all the subtrees of the input
tree.

• modular trick is designed to capture the semantics of
structures or patterns in the formulae. For instance,
the structure of y = x2 indicates a quadratic equation,
which in this example the left-hand side variable (y) is
defined as the square of another variable (x). Based on
this modular trick algorithm, both y = x2 and b = a2

have the same semantics. The output of this algorithm
is a feature set consisting of all the substructures of a
specified depth d rooted on any node of the tree.

• SIGURE hash is an algorithm to provide a metric
which is invariant to variable names. In a math ex-
pression, alpha equivalent transformation corresponds
to renaming of variables. For instance, this algorithm
can capture the mathematician’s intuition that x = x
has fundamentally a similar meaning to y = y, but
not to x = y, for any value of x and y. The feature
set obtained from this algorithm consists of subtrees
of the input tree where all the variables are renamed
according to their appearance order.

In the case of encountering leaves that are free variables
qvars, these algorithms generate hash values based on the
name attribute found in the qvar element.

Detailed explanation and examples regarding these hash
algorithms can be found in our previous paper [6].

2.2 Extracting Textual Information
Given a math expression, we extract textual information

for each of the granularity levels as follows.

• Math-level

– words in context window are obtained by taking
ten words preceding and following each math ex-
pression,

– descriptions are sets of terms that precisely de-
note the target math expression and are automat-
ically extracted for each math expression using a
support vector machine model,

– noun phrases in the same sentence as the target
math expression.

• Paragraph-level (for arXiv task only)

– all words in the paragraph

• Document-level

– title of the document,

– abstract of the document,

– keywords found in the document, which are ex-
tracted using RAKE [7],

– descriptions from all math expressions in the doc-
ument,

– noun phrases in the document,

– all words in the document.

Each extracted keyword is accompanied with a RAKE’s
score [7], which is in the interval of [1.0,∞). We later utilize
the logarithm of this score, i.e. 1+ log(rakeScore), to boost
the similarity score of each matching keyword.
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Figure 1: Overview of MCAT system

2.3 Extracting Dependency Graph of Math
Expressions

In addition to the surrounding text (e.g. context window,
descriptions), the meaning of each math expression can of-
ten be found in other regions of the document, especially if
the expression appears several times within the document.
Moreover, to understand a math expression, we often need
to access the meaning of each constituent symbol. Having
faced these challenges, we propose a method to capture the
dependency relationships between math expressions within
each document.
A dependency graph G(V,E) of mathematical expressions

is a directed graph that is built by examining tokens of each
expression in a document. Each vertex in the graph rep-
resents a distinctive mathematical expressions found in a
document. If a distinctive mathematical expression appears
several times in a document, all of the extracted words in
context window and descriptions are merged into their re-
spective sets, namely the set of context window and the
set of descriptions. A directed edge from vertex mathexp 1
to vertex mathexp 2 indicates that the string representa-
tion of mathematical expressions mathexp 1 contains ex-
pression mathexp 2. In this case, the vertices mathexp 1
and mathexp 2 are called parent and child, respectively.
In this MathIR task, prior to the string matching process,

we apply several preprocessing steps:

• minimize the number of mrow elements within each
math expression,

• remove a pair of outermost parentheses enclosing the
math expression,

• remove all attachments, such as subscript, superscript,
underscript, and overscript, from the expression, and

• if the math expression is an (in)equality, extract the
object explained by the (in)equality, that is subexpres-
sion on the left side of the (in)equality symbol.

The purpose of these preprocessing steps is to obtain the
relationships between math expressions when either:

• two math expressions have a similar meaning (i.e. the
two expressions have the same base form), OR

• the meaning of a math expression helps determine the
meaning of another expression (e.g. the former is a
subexpression of the latter)

even though these expressions have different MathML rep-
resentations.

Having obtained a dependency graph, we can use the
math-level textual information (i.e. context window, de-
scriptions, and noun phrases) from each child expression to
also represent the target expression. As a result, we can as-
sociate each mathematical expression not only with its own
text information, but also with the text information from
each of its children.

2.4 Indexing Math Expressions
We adopt Apache Solr as the search platform of our sys-

tem. There are three indexes used by our system, each of
which contains math-, paragraph-, and document-level in-
formation. Each index contains multiple fields, which are
shown in the Table 1.

The math index contains both encoded math expres-
sions and textual information explaining the expressions.
In Table 1, fields p opaths op to p sister represent encoded
math expressions using path-based encoding technique ap-
plied to MathML Presentation format, while c opaths op to
c upaths arg represent the results from the same encoding
technique applied to MathML Content. We separate ver-
tical paths opaths and upaths directing to operators from
ones directing to identifiers (mi and ci) and numbers (mn
and cn). Therefore, in our database, there are two fields for
each type of vertical path, namely one whose name ending
in ” arg” (vertical paths to arguments, i.e., identifiers and
numbers) and ones ending in ” op” (paths to operators).

Fields p stree to p sigure and c stree to c sigure are
the result from hash-based encoding techniques applied to
MathML Presentation and Content format. The rest of
fields in the math index represent the textual information
found surrounding the math expressions. The textual infor-
mation contained by these textual fields, together with ones
in paragraph and document indexes, are described in the
Section 2.2.

2.5 Combining All Types of Information for
Searching

During searching, the ranges of scores obtained for differ-
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Table 1: List of fields in each index
Index Name Field

Math

p opaths op
p opaths arg
p upaths op
p upaths arg
p sisters
c opaths op
c opaths arg
c upaths op
c upaths arg
p stree
p mtrick
p sigure
c stree
c mtrick
c sigure
contexts
descriptions
noun phrases
contexts depgraph
descriptions depgraph
noun phrases depgraph

Paragraph all words*

Document

title
abstract
keywords
descriptions
noun phrases
all words

*Field is not used in Wikipedia task.

ent types (or fields) of information are varied. Therefore, we
need to perform a score normalization step prior to obtain-
ing final score. We use

finalScore =
rawScore

1 + rawScore
(1)

as the normalization function.
In addition, we estimate cold-start weight for each field,

since we consider that different fields may have different im-
portance. To obtain this set of weights, we use multiple
linear regression [4]. For the purpose of this regression task,
we construct a training set using the relevance judgment re-
sult released by the NTCIR-11 Math-2 Task [1]. Procedure 1
specifies the detailed steps to construct the training set.

Procedure 1 (Training Set Construction).

1. Get a math expression f∗
i to represent each retrieval

unit (paragraph) pi in the training set.

1.1. Set f∗
i = argmaxfij∈pi

score(q, fij) and

score(q, pi) = score(q, f∗
i ), where q is a

query that contains math and keywords,
and score(q = query, f = math) is defined by
Lucene’s default TF-IDF similarity with the
subscore from each field being normalized using
Eq. 1.

2. Get features for each retrieval unit pi in the training
set.

2.1. For each topic, compose a query qfield for each
field we have in all indexes.

2.2. Features: sfield = score(qfield, f
∗
i ) for field in math index

score(qfield, pi) for field in paragraph index
score(qfield, di) for field in document index

where di is the document where pi lies.

2.3. Response: relevancy score (0 to 4) provided in
judgment result.

For the searching procedure, both score normalization and
cold-start weights are specified in the query using Function-
Query provided by Solr. We obtain initial ranked lists of
2,000 units from math, paragraph, and document indexes.
For the math index, we expand the ranked list in increments
of 2,000 until the number of unique paragraphs referred to
by the list is at least 2,000.

2.6 Unification
The motivation of applying unification as post-processing

module in our search system is to put math expressions that
can be instantiated from the query to the rank higher than
the one that cannot. The unification module treats each
symbol (i.e. operator, identifier, and number) found in math
expressions as a constant. Only free variables, i.e. qvars,
found in query math expressions are treated as variables.
Given two terms, each of which can be either a constant or
a variable, they unify if they are the same term or if they
contain variables that can be uniformly instantiated with
terms in such a way that the resulting terms are equal. For
instance, query p = mv (all terms are constants and there is
no qvar) will only unify to math expressions that have the
same presentation, i.e. p = mv. On the other hand, query
y = 5x + C (C is a qvar) will unify to y = 5x + 9, since
variable C can be instantiated to constant 9. The unification
by variable instantiations is allowed when the instantiations
are compatible. For an example, query X = X (X is a qvar)
will not unify to a = b. This rule makes sense considering
the query asks for an equality where the terms in the left-
and right-hand side of the equality symbol are the same.

We implement this module by exploiting the unification
feature from Prolog. To use this feature, we transform each
math expression into its functor form (prefix notation). This
functor form is obtained by utilizing the semantic provided
by MathML Content representation of the math expression.
For instance, given a math expression a + b ∗ c, its functor
form is: apply(plus, a, apply(times, b, c)).

We use this unification module to boost the similarity
score from the math index. If a query and the math ex-
pression (or any subexpression of the expression) returned
by our search system unify, we double the math-level simi-
larity score of the expression while keep its paragraph- and
document-level scores as they are.

3. ARXIV TASK

3.1 Experiment Setup
There are three common features we apply for obtaining

the ranked list for arXiv task, which are as follows.

• utilize textual information obtained from exploiting
dependency graph

• use cold-start weights obtained by multiple linear re-
gression
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• apply unification to boost the math-level score

Our system also applies the same set of features for
Wikipedia task, which will be explained in the next sec-
tion. The list of features we used for each submission in this
arXiv task is depicted by Table 2.
The processing pipeline used for both subtasks in the

arXiv task follows Fig. 1. For the Simto subtask, however,
there are some additional details as follows.

• Prior to encoding the query math expressions, our sys-
tem strips simto and exact tags, which are specially
defined for Simto subtask. Hereinafter, the encoding
process is the same as the Main subtask.

• The unification module utilize the simto region for
boosting the similarity score.

– If the query (with simto and exact are stripped)
and the returned math expression (or any of its
subexpressions) unify, the math-level similarity
score is doubled. This is the common process that
is also applied in the Main subtask. ELSE

– Our system treats a simto region as a qvar, then
replace this region with a single free variable.
If the resulting query math expression and the
(subexpression of) returned expression unify, our
system multiplies the similarity score by 1.5.

In this subtask, the searching and ranking module of our
system cannot utilize the regions of exact matching inside a
similarity region yet.

3.2 Experiment Results
The performance of our system in arXiv task, which is

measured using trec eval, is shown in Table 3. For both
Main and Simto subtasks, our system achieves the best pre-
cision among other teams. The discussion about this result
will be conducted for each subtask.

Main Subtask
Among our four submissions, MCAT allfields nowgt unif (a-
nw-u) and MCAT allfields lr unif (a-lr-u) obtain the best
precision. In addition, our submission MCAT nodep lr unif
(nd-lr-u), which gives the lowest performance among our
submissions, already performs slightly better than ICST, es-
pecially in high relevance measurements. However, it does
not happen for partial relevance judgment up to P@10 mea-
surement, where nd-lr-u is outperformed by ICST. Interest-
ingly, at P@15 and P@20, this situation is reversed, where
nd-lr-u now performs better. This indicates that this sub-
mission provides better coverage, i.e. recalling/retrieving
relevant units, but has an issue in ranking the retrieved
units.
We use the result from our four submissions to evaluate

the effectiveness of three features we utilize: dependency
graph, cold-start weights, and unification.

• Dependency graph has a major impact in our system.
Compared to nd-lr-u, the submission a-lr-u, which ex-
ploits dependency graph, delivers significant precision
improvement.

• Cold-start weights does not perform well enough. The
submission a-lr-u, which uses cold-start weights, does

not outperform a-nw-u consistently. It outperforms a-
nw-u only in three occasions, namely P@5 (in partial
relevance judgment) and P@10 (both in relevance and
partial relevance), while the opposite happens in the
other five occasions.

• Unification performs well enough. The submission a-
lr-u outperforms a-lr in most of the measurements. At
P@15 and P@20, unification performs well for partial
relevance, but does not for relevance judgment. This
suggests the that unification module obtains several
partially relevant math expressions that were previ-
ously outside of the top-20 and boosts their scores. As
a consequence, these expressions may now be ranked
higher than several highly-relevant expressions that
were previously already in the top-20. If these highly-
relevant expressions (and all of its subexpressions) and
the query do not unify, then they may be now out of
the top-20.

Simto Subtask
Similar to the Main subtask, our submission nd-lr-u, which
gives the lowest performance among our submissions, per-
forms slightly better than MIRMU, especially in the high
relevance measurements. However, unlike in the Main sub-
task, nd-lr-u does not perform well at P@20 of partial rele-
vance judgment. In addition, while a-nw-u delivers the best
performance in high relevance judgment, which also happens
in the Main subtask, a-lr is the one who provides the best
precision (except at P@5) in partial relevance judgment. We
suggest that these two trends, which are not found in the
Main subtask, may happen due to our attempt to relax the
unification module during handling simto region (i.e. replac-
ing each simto in a query with a qvar and multiplying the
similarity score of the target math expression by 1.5 if the
(subexpression of) expression and the query unify).

We evaluate the effectiveness of our three features in this
subtask as follows.

• Dependency graph has a major impact in our system.
The submission a-lr-u almost doubles the precision of
nd-lr-u in partial relevance.

• Cold-start weights does not perform well. Submission
a-lr-u is even consistently outperformed by a-nw-u.

• Unification surprisingly does not consistently perform
well. Submission a-lr-u performs better than a-lr in the
high relevance judgment, but not in the partial one (is
good only up to P@5).

Discussion
Having examined the results from both Main and Simto sub-
tasks, we found that the best P@5 obtained by our systems
in both subtasks is similar, i.e. .2828 compared to .2750
in high relevance and .5586 to .5500 in partial relevance.
However, in the Simto subtask, the drops of precision (from
P@5 to P@10, P@10 to P@15, and P@15 to P@20) of sub-
missions that are applying unification are steeper than ones
in the Main subtask. We argue that this happens due to
the same reason we have already mentioned above, i.e. out
attempt to relax the unification module in Simto subtask.
To tackle this problem in the future, we need to maintain
some structure within simto region, instead of just replacing
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Table 2: Features used in each submission
Run ID dependency graph cold-start weights unification

arXiv task (Main and Simto subtasks) and Wikipedia task (MathWiki subtask)
MCAT nodep lr unif (nd-lr-u) O O
MCAT allfields nowgt unif (a-nw-u) O O
MCAT allfields lr (a-lr) O O
MCAT allfields lr unif (a-lr-u) O O O

Wikipedia task (MathWikiFormula subtask, no textual query)
MCAT-browse allfields nowgt unif (a-nw-u) O
MCAT-browse allfields lr (a-lr) O
MCAT-browse allfields lr unif (a-lr-u) O O

it with a qvar, when applying relaxed unification. In addi-
tion, we can later vary the multiplier, which is now fixed at
1.5, based on the depth of the structures of math expressions
we maintain within the simto regions.
We also found out that the cold-start weights obtained

using multiple linear regression do not work well. We sug-
gest that this is caused by the negative weights we obtain
for several fields in our system. Furthermore, these negative
weights may be difficult to interpret, since for a given query,
any match in a field is supposed to “increase”, not decrease,
the similarity score of a retrieval unit. To handle this prob-
lem in the future, we can consider to restrict the weights to
positive numbers during training process.
The score normalization in Eq. 1 that we applied during

searching, however, works well. This step allows our sys-
tem to utilize many fields for searching without any concern
regarding whether subscores from certain fields will improp-
erly dominate the final score, especially when the number of
terms generated for each of these certain fields is much larger
than the number of terms generated for other fields. As a
result, our system can finish at the top for both subtasks in
the arXiv task.

4. WIKIPEDIA TASK

4.1 Experiment Setup
The list of features we used for each submission in the

Wikipedia task is depicted by Table 2. For the MathWiki
subtask, we employ the same set of features as in the arXiv
task. Subsequently, we estimate the cold-start weights for
all the fields specified in Table 1, except all words field in
the paragraph database. It is not a trivial task to correctly
extract paragraphs from Wikipedia articles, thus we do not
employ paragraph database for the Wikipedia task.
For the MathWikiFormula subtask, however, the depen-

dency graph feature is not applicable as this subtask gives
a set of topics that contain only math expressions, without
any textual terms. Moreover, the absence of textual terms
in this subtask leads to less fields specified in the practical
(Solr) query. We re-estimate the cold-start weights for the
fields that will only be used in this subtask. Apart from
details we specified above for each subtask in the Wikipedia
task, the rest of the processes are the same as in the Main
subtask of the arXiv task.

4.2 Experiment Results
The performance of our system in Wikipedia task is shown

in Table 3. Same as in the arXiv task, the performance is
measured using trec eval. The discussion about this result
is provided as follows.

MathWiki Subtask
In the MathWiki subtask, unlike in the arXiv task, our sys-
tem does not deliver the highest performance. However, sev-
eral trends observed in this subtask are the same as trends
found in the arXiv task - Main subtask, such as:

• Cold-start weight does not perform well enough.

• Unification performs really well. The submission a-lr-u
significantly outperforms a-lr in all precision measure-
ments.

An interesting trend that is observed only in the Math-
Wiki subtask is that the dependency graph does not per-
form well enough, unlike in the arXiv task. We suggest
that this happens because many topics in this subtask have
extremely common textual terms (similar to stop words).
From our manual observation, there are only 5 out of 30
topics that contain textual terms whose sparsity differs from
stop words’, i.e. topics #8, #9, #12, #24, and #29. Due to
this issue, the use of dependency graph to enrich the textual
information of the indexed math expression is not beneficial
in this search scenario.

In addition, we observe that the ranked lists returned by
our system for several topics contain some retrieval units
that match only with the very common terms found in the
textual query. This indicates that the tf-idf scoring we use
cannot discriminate common terms well enough, and as a
consequence, our system sometimes cannot handle queries
that are formed as questions (containing many common
terms) well enough. This condition is worsened by the fact
that the use of dependency graph to enrich the indexed tex-
tual information will increase the number of indexed com-
mon words, thus will further harm the search results in this
subtask. We suggest that this is also the reason why in this
subtask our system does not perform as well as in the arXiv
task.

MathWikiFormula Subtask
Our system delivers the best precision result in the Math-
WikiFormula subtask. The trends found in this subtask are
the same as ones in the other subtasks, i.e. score normaliza-
tion and unification perform well, but the cold-start weight
does not. However, unlike in the MathWiki subtask, the
topics in this subtask do not contain textual terms. Thus,
our system does not encounter any issue with terms similar
to stop words in this subtask.

Discussion
Having examined the results from both MathWiki and
MathWikiFormula subtasks, we found that the score nor-
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Table 3: Search performances

RunID
Relevant Partially Relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
arXiv task - Main subtask

MCAT nodep lr unif (nd-lr-u) .2345 .1966 .1747 .1586 .4828 .4793 .4690 .4552
MCAT allfields nowgt unif (a-nw-u) .2828 .2379 .2184 .1948 .5448 .5345 .5149 .4897
MCAT allfields lr (a-lr) .2552 .2379 .2092 .1828 .5586 .5379 .5034 .4690
MCAT allfields lr unif (a-lr-u) .2621 .2448 .2046 .1810 .5586 .5483 .5126 .4707
ICST .2276 .1862 .1632 .1362 .5517 .4966 .4299 .4000

arXiv task - Simto subtask
MCAT nodep lr unif (nd-lr-u) .2000 .1125 .0917 .0687 .3250 .2000 .1667 .1500
MCAT allfields nowgt unif (a-nw-u) .2750 .2125 .1667 .1375 .5500 .4250 .3667 .3250
MCAT allfields lr (a-lr) .1750 .1375 .1417 .1313 .4250 .3875 .3833 .3687
MCAT allfields lr unif (a-lr-u) .2750 .1625 .1500 .1313 .5000 .3625 .3333 .3063
MIRMU .0250 .0625 .0750 .0625 .3000 .2500 .2677 .2813

Wikipedia task - MathWiki subtask
MCAT nodep lr unif (nd-lr-u) .2933 .2467 .2267 .1983 .6200 .5867 .5711 .5333
MCAT allfields nowgt unif (a-nw-u) .3600 .3233 .2689 .2433 .7667 .7167 .6867 .6533
MCAT allfields lr (a-lr) .2467 .2233 .2044 .1817 .5533 .5133 .4956 .4650
MCAT allfields lr unif (a-lr-u) .2867 .2533 .2244 .1983 .6067 .5700 .5533 .5183
ICST .4733 .3767 .2978 .2617 .8533 .7900 .7133 .6600

Wikipedia task - MathWikiFormula subtask
MCAT-browse allfields nowgt unif (a-nw-u) .4900 .3900 .3317 .2825 .9100 .8400 .8067 .7687
MCAT-browse allfields lr (a-lr) .4100 .3225 .2733 .2325 .7700 .7375 .7083 .6650
MCAT-browse allfields lr unif (a-lr-u) .4550 .3475 .2950 .2613 .7850 .7475 .7100 .6700
RITUW .4400 .3225 .2700 .2300 .8400 .7650 .7317 .7063

malization and unification have a positive impact on our
search system. However, the cold-start weights have a neg-
ative impact. These tendencies are similar to the ones ex-
hibited in the arXiv task. In contrast, the results from the
Wikipedia task raise our concern that our math search sys-
tem may not be reliable enough to handle extremely com-
mon textual terms in the query. One of several possible
approaches to solve this issue is either to properly configure
Solr or to simply remove these common textual terms from
the query prior the searching procedure. Another method
is to map several common terms, such as “what”, “why”,
“solve”, and “define”, to related terms for retrieval. For in-
stance, term “what” might be mapped to “definition.” We
then use this mapping to encourage hits which both contain
and define the math query more than those that only con-
tain the query. Another possibility is to take into account
the proximity between the retrieved math expression and
the matching textual term in the original document during
searching.

5. SPACE UTILIZATION AND PROCESS-
ING TIME

The execution environment of our system is two Linux
servers, each of which has 64 processors. We use one server
to store math indexes, and another server to store paragraph
and document indexes. For the arXiv task, the sizes of math,
paragraph, and document indexes are 426.39GB, 898.18MB,
and 1.26GB, respectively. For the Wikipedia task, the sizes
of math and document indexes are 2.21GB and 365.94MB,
respectively.
In addition, the processing time required by our system

for each submission in the arXiv - Main subtask is shown
in Figure 2. The first three plots depict the time needed to

obtain initial ranked lists from document, paragraph, and
math indexes, respectively. For each plot, the first four box-
plots correspond to our four submissions. These four sub-
missions utilize score normalization step and some of them
use also cold-start weights. The fifth boxplot “all (default)”
denotes the query time when none of these two features are
implemented.

The order of the query time from the shortest to the
longest is document, paragraph, and then math index. Two
factors influencing the query time are: (i) the more retrieval
units an index stores, the longer the query time is and (ii)
the more query terms and fields we specify for searching in
a certain index, the longer the query time is. Among our
four submissions, the a-nw-u has the shortest query time.
This happens because without the use of cold-start weights,
the query (i.e. FunctionQuery) becomes simpler and less
calculation is performed by Solr. This reasoning also ex-
plains why all our four submissions require query time that
is significantly longer than the “all (default)” case. All our
four submissions use FunctionQuery to apply score normal-
ization to each field specified in the query. The more fields
a query specifies, the more score normalization step Solr has
to perform, thus the longer the query time is. This observa-
tion shows that the positive impact of score normalization
procedure, i.e. ensures that none of the subscores from cer-
tain fields will improperly dominate the final score, comes
at the cost of the query time.

The last plot in Fig. 2 displays the wall-clock time taken
by our system to complete the unification procedure that is
parallelized into 50 processes. All three submissions have the
same median of unification time. However, the time distri-
bution of submission a-nw-u is more skewed than the other
two submissions. Since all these submissions contain the
same number of math expressions in the initial ranked list,
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Figure 2: Query time of our system in the arXiv - Main subtask.

this difference in skewness indicates that the initial ranked
list of a-nw-u contains more complex math expressions, i.e.
have deeper levels of MathML representations and contain
more sub-expressions, than the ranked lists from nd-lr-u and
a-lr-u. As unification step is performed between math query
and each sub-expression of the retrieved math expressions,
the more sub-expressions a math expression contains, the
longer the unification time is.

6. CONCLUSION
We have presented the participation of our MCAT system

in the NTCIR-12 MathIR Task. We implemented several
new building blocks in our search system for this task: hash-
based encoding technique, several types of textual informa-
tion to cover three levels of information granularity (math
expression, paragraph, and document levels), new approach
for generating dependency graph of math expressions, score
normalization, cold-start weights, and unification. We then
investigated the effectiveness of some of these approaches
and found out that dependency graph, score normalization,
and unification are integral parts of our search system. The
cold start weights, however, do not have a good impact on
the search performance due to the negative weights obtained
by several database fields. We also find an issue regarding
the inability of tf-idf scoring technique to handle extremely
common textual terms in the Wikipedia task.
One of the future works is to set the unification module to

vary the boosting score based on the depth location of the
subexpression inside the retrieved math expression to which
the query unifies. We also consider investigating the effec-
tiveness of cold-start weights if their values are restricted to
positive numbers.
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