STC TASK DESIGN

Given a new post, can the system return a “good” response by retrieving a comment from a repository?

CHINESE SUBTASK

1. **Submitted Runs**

 There were a total of 38 registrations, and 16 of them finally submitted 44 runs.

2. **Evaluation Methods**

 (a) The official evaluation measures are graded relevance IR evaluation measures: \(nG@1 \), \(nERR@10 \), and \(P^+ \).

 (b) Results from participants are pooled to perform manual annotation.

3. **Chinese Test Collection**

 Test collection is constructed by crawling post-comment pairs from Weibo.

 Repository
 - \#posts: 196,495
 - \#comments: 4,637,926
 - \#pairs: 5,648,128

 Training Data
 - \#posts: 225
 - \#comments: 6,017
 - \#labeled pairs: 6,017

 Test Data
 - \#test topics: 100

JAPANESE SUBTASK

1. **Submitted Runs**

 There were a total of 12 registrations, and 7 of them finally submitted 25 runs.

2. **Evaluation Methods**

 Basically the same as the Chinese subtask with the following differences:
 (1) In consideration of the subjective nature of the task, the Japanese task used ten annotators to label each retrieved comment with L0, L1, or L2. For \(nG@1 \) and \(nERR@5 \), we used their average values over all annotators.

 (2) In addition to \(nG@1 \) and \(nERR@5 \), \(\text{Acc}_G@k \), which is the averaged ratio of correct labels within top-\(k \) results, was used.

 \(G \) denotes the correct label and can either be \{L1\} or \{L1, L2\}.

3. **Japanese Test Collection**

 Test collection is constructed by crawling tweet pairs (tweets and their replies) from Twitter. The training data contain 1M tweets. The test data contain 202 topics (input tweets).

Evaluation Results

- **Chinese Subtask**
 - \(nDCG \)
 - \(nERR \)
 - \(P^+ \)

- **Japanese Subtask**
 - \(nDCG \)
 - \(nERR \)
 - \(\text{Acc}_2-1 \)
 - \(\text{Acc}_2-5 \)
 - \(\text{Acc}_{12-1} \)
 - \(\text{Acc}_{12-5} \)

Conclusions and Future work

(a) Filtering comments by using manually designed rules was simple but effective.
(b) Representing a post (or comment) by the word2vec model was helpful to perform semantic-level matching.
(c) We need to perform more analysis on the properties of post-comment pairs from the aspects of comment length, popularity, dialogue act, and sentiment in order to learn/obtain more effective retrieval models.