Introduction

- DCU participated in the slide-group task to rank pre-defined passages in order of relevance to a spoken query.
- Passage ranking implemented by combining passage and document retrieval scores computed with Okapi BM25.
- Query expansion (QE) with pseudo relevance feedback (PRF).
- BM25 and QE parameters optimised to improve the ranking quality of passages and documents.

Parameter Optimisation

- BM25 and QE parameter optimisation\(^{[5]}\).
- Linear search method to maximise MAP given training queries.

Retention Models

- (1) BM25 (baseline): \(S_{BM25} \)
- (2) BM25 + QE: \(S_{BM25-QE} = \alpha \cdot S_{BM25} + \beta \cdot S_{QE} \)
- (3) DSI + QE: \(S_{DSI-QE} = \alpha \cdot S_{DSI} + \beta \cdot S_{QE} \)
- (4) DSI + PRF: \(S_{DSI-PRF} = \alpha \cdot S_{DSI} + \beta \cdot S_{PRF} \)

Experiments and Results

- Train set: SpokenQuery&Doc-1 (SQD-1)
- Test set: SpokenQuery&Doc-2 (SQD-2)
- ASR = REF-WORD-MATCH transcriptions

Conclusions

- Results reaffirm that passage retrieval effectiveness can be improved by incorporating document-level evidence.
- Score interpolation seems to be an effective technique to achieve this purpose.
- PRF and QE provide no significant gains in retrieval effectiveness, in our retrieval set-up.

References

