Spoken document retrieval using neighboring documents and extended language models for query likelihood model

Kazuaki Ogawa, Tatsuaki Murahashi, Hiroaki Taguchi, Kodai Nakajima, Masanori Takehara, Satoshi Tamura, Satoru Hayamizu

1. Overview

- Probabilistic models are employed in document retrieval.
- We aim at retrieving spoken documents corresponding to presentation slides.
- Our methods are based on the query likelihood model and smoothing.

We propose three smoothing methods.

(A.) Using a language model obtained from research papers.
(B.) Using a cache model and an *N*-gram model.
(C.) Using neighboring documents.

3. Experimental condition(Formal-run)

Task	SpokenQuery&Doc-2		
Sub task	SQ-SCR SGS retrieval		
Query	K-REF-WORD-MATCH		
Target	K-REF-WORD-MATCH		
The number of queries	Formal-run: 80		
The number of target document	2807		
Static document collection	Target documents		
Dynamic document collection	Research papers in ASJ (published 2005 to 2014)		
μ and ν in the Dirichlet smoothing	Method 1 and 4: $\mu = 320$ Method 2 and 5: $\mu = 320$, $\nu = 80$ Method 3 and 6: $\mu = 320$, $\nu = 10$		
M in the cache model	M = 100		
N in the N-gram model	N = 5		
γ for linear interpolation	$\gamma = 0.25$		

2. Proposed smoothing methods

(A.) <u>Research papers</u>

- We proposed extended Dirichlet smoothing using a dynamic document collection obtained from web pages.
- However, web documents have a lot of noises.
- Instead of web documents we use a research paper corpus R in ASJ.

 $P(w_i|\theta_d;\mu,\nu) = \frac{|d|}{|d|+\mu+\nu} P(w_i|\theta_d) + \frac{\mu}{|d|+\mu+\nu} P(w_i|\theta_c) + \frac{\nu}{|d|+\mu+\nu} P(w_i|\theta_R)$

 $\succ \theta_d$: A unigram model using a target document d.

 $\geq \theta_C$: A unigram model using a target document collection.

(I.) MAP results

We tested the following six retrieval methods using NTCIR-12 SpokenQuery&Doc-2 Formal-run data.

	(A.) Research papers	(B.) Cache model and <i>N</i> -gram model	(C.) Neighboring documents	MAP
Method 1				0.197
Method 2	\bigcirc			0.193
Method 3		\bigcirc		0.215
Method 4			\bigcirc	0.242
Method 5	\bigcirc		\bigcirc	0.239
Method 6		\bigcirc	\bigcirc	0.252

$\succ \theta_R$: A unigram model using research papers.

- We select research papers based on cosine similarities of TF-IDF vectors.
- Employing a corpus related to target documents is effective and helpful.

(B.) Cache model and N-gram model

• We use linear interpolation of a **cache model** and an *N*-gram model in the Dirichlet smoothing. $P(w_i|\theta_d;\mu,\nu) = \frac{|d|}{|d|+\mu+\nu}P(w_i|\theta_d) + \frac{\mu}{|d|+\mu+\nu}P(w_i|\theta_c) + \frac{\nu}{|d|+\mu+\nu}P(w_i|\theta_{KC})$

$P(w_i|\theta_{KC}) = \left(\gamma P_{KN}(w_i|\theta_{KN}) + (1-\gamma)P_{CH}(w_i|M,d)\right)$

$$P(w_i|M,d) = \frac{1}{|M| + |d|} \left\{ \sum_{w_j \in M} \delta(w_i, w_j) + \sum_{w_k \in d} \delta(w_i, w_k) \right\}$$

P_{CH}(w_i|M, d): A probability based on a cache model.
 P_{KN}(w_i|θ_{KN}): A probability based on an N-gram model.
 M: |M| terms appeared just before a target document d.

(II.) <u>Discussion</u>

- Comparing Methods 1 3 to 4 6: Methods using neighboring documents are better than the other methods.
- Comparing Methods 1, 4 to 2, 5:

The MAP score using research papers slightly decreased.

- We need to reconsider the way to select research papers.
- We obtained the best result in Method 6.
- Employing **contextual information** has effectiveness for
- $\succ \theta_{KN}$: An *N*-gram model using Kneser-Ney smoothing for a target document *d*.
- \succ We train the *N*-gram model using *d* and *M*.
- We expect to add contextual information.

(C.) Neighboring documents

- The length of target documents is often short.
- We use neighboring documents of a target document.
 S'(i) = ∑_{n=-L}^L w_n S(i + n) w_n = 1/(|n| + 1)
 S(i): A similarity score of a partial document corresponding to *i*-th slide and a query.
 w_i: A weighting coefficient of the inverse proportion.

SDR, even if (B.) and (C.) have similar effects.

• We need to improve integration schemes in our approach.

- We should properly deal with unknown words in queries.
- We try to reconsider weighting methods when using neighboring documents.
- It is necessary to investigate smoothing parameters.
- We should investigate more effective integration schemes for our proposed smoothing methods.