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ABSTRACT
This paper proposes a correct phoneme sequence estimation
method using a deep neural network (DNN)-based frame-
work for spoken term detection (STD). We use a DNN ar-
chitecture as a correct phoneme estimator. The DNN-based
estimator estimates a correct phoneme sequence of an ut-
terance from some sorts of phoneme-based transcriptions
produced by multiple ASR systems in post-processing, for
reducing phoneme errors. In the experimental evaluation
on the NTCIR-12 SpokenQuery&Doc-2 SQ-STD test collec-
tion, our proposed approach defeated the baseline system
prepared by the task organizers. However, our approach
could not outperform our DTW-based STD method we pre-
viously proposed.

Team Name
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Keywords
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1. INTRODUCTION
Spoken term detection (STD) is designed to determine

whether or not a given utterance includes a query term con-
sisting of a word or phrase. STD research has become a hot
topic in the spoken document processing research field, and
the number of STD research reports is increasing in the wake
of the 2006 STD evaluation organized by National Institute
of Standards and Technology [15].
The difficulty in STD lies in the search for terms under

a vocabulary-free framework because search terms are not
known prior to a large vocabulary continuous speech recog-
nition (LVCSR) system. Many studies tackling STD have
already been proposed [18, 13]. In the past, most STD stud-
ies focused on out-of-vocabulary (OOV) and speech recog-
nition error problems. For example, STD techniques us-
ing subword (syllable or phoneme)-based lattices or con-
fusion networks (CN) have been proposed [13]. In recent
works, we also proposed a CN-based indexing and a dynamic
time warping (DTW)-based search engine [14]. The CN-
based index, which we call “Phoneme Transition Network
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Figure 1: Overview of the two-pass STD framework
using CRF-based triphone detection modeling.

(PTN)-formed index [14],” was made of 10 types of tran-
scriptions generated by the 10 different automatic speech
recognition (ASR) systems, including an LVCSR system and
a phoneme recognition system. We have shown that our
proposed method could outperform other STD technologies
that participated in the ninth National institute of infor-
matics Testbeds and Community for Information access Re-
search (NTCIR-9) project STD evaluation framework [3].
A DTW-based matching between a subword sequence of a
query term and a transcription of speech is weak for speech
recognition errors. Therefore, the STD performance of the
DTW-based technique depends on the accuracy of subword-
based transcriptions.

Our DTW-based approach using a PTN-formed index for
STD was very robust for ASR errors. However, this ap-
proach output many false detections because the structure
of PTN was complex [14]. These false detections degraded
the STD performance. In this paper, we focus on control-
ling false detections in a second-pass stage using a machine
learning approach.

Figure 1 shows our STD framework. We explore a correct
phoneme estimation approach using a deep neural network
(DNN)-based framework for making an index for term detec-
tion in the second-pass stage on the NTCIR-12 SpokenQuery
&Doc-2 SQ-STD test collection. A DNN-based phoneme es-
timator makes a posterior-gram-based index from phoneme-
based transcriptions of target speeches outputted by multi-
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Figure 2: Overview of the first-pass stage using
DTW-based matching.

ple ASR systems.
A DNN-based phoneme estimator is trained by using fea-

tures generated from 10 types of phoneme-based transcrip-
tions. This approach is sensible because the features for
DNN modeling are prepared for making a PTN-formed in-
dex, which is also derived from 10 types of transcriptions,
used in the first-pass of the entire STD framework.

2. DTW-BASED APPROACH
DTW-based STD using a PTN-formed index is performed

in the first-pass stage on the entire STD framework, as in
the baseline approach. Figure 2 shows an overview of the
baseline method. In the indexing phase, speech data is pro-
cessed using ASR, and the recognition outputs (words or
sub-word sequences) are converted into the PTN-formed in-
dex for STD. Figure 3 shows an example of the development
of a PTN-formed index for the speech “cosine” (Japanese
pronunciation is /k o s a i N/ ) by aligning 10 phoneme
sequences from the best hypothesis of all the ASR systems.
The speech was recognized by the 10 ASR systems to yield
10 hypotheses, which were then converted into phoneme se-
quences. Next, we obtained “aligned sequences” using the
same Dynamic Programming (DP) scheme, as described in
[6]. Finally, a PTN was obtained by converting the aligned
sequences. The term“@”in Fig. 3 indicates a null transition.
In the search phase, the word-formed query is converted

into a phoneme sequence. Then, the phoneme-formed query
is input to the term search engine. The term search engine
searches for the query term from the index at the phoneme
level using the DTW framework. Unlike the combination
techniques of multiple STD systems, described in [1], the
baseline system combines the transcriptions produced by
multiple ASR systems.
Figure 4 shows an example of the DTW framework for

the search term“cosine” ( / k o s a i N / ) and the PTN-
formed index. The PTN contains multiple arcs between ad-
joining node pairs. These arcs are compared to one of the
phoneme labels of a query term.
We used edit distance as cost on the DTW paths. The

speech	utterance	“Cosine”	( /k	o	s	a	i N/	)
ASR ID Outputs	of	10	ASRs	

(all	outputs	are	converted	into	phoneme	sequence)	

ASR #1 k o s @ a @ @ i @
ASR #2 q o s u a @ a @ N
ASR #3 k o s @ a m a i @
ASR #4 k o s @ a @ @ @ N
ASR #5 k o s @ a @ @ @ N
ASR #6 @ @ s @ a @ @ @ N
ASR #7 b o s @ a a a @ @
ASR #8 @ @ s @ a b @ i @
ASR #9 @ @ s @ a @ @ @ N
ASR #10 @ @ s @ a @ @ @ N
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Figure 3: Generation of a PTN-formed index by
performing alignment using DP and converting to
a PTN.

details of the DTW matching process are discussed in our
previous study [7, 14]. We calculate distance between a
query and a PTN based on Bhattacharyya distance (BD)
[12]. The BD between phoneme p and q is calculated by
the monophone-based Gaussian mixure models (GMMs) of
p and q.

BD(p, q) =
1

8
(µp − µq)

TΣ−1(µp − µq) +
1

2
ln(

|Σ|√
|Σp||Σq |

) (1)

The costs for substitution, insertion and deletion errors were
commonly set to 1.0 when the number of phonemes consist-
ing of a query term was N or larger than N . On the other
hand, each cost was commonly set to 1.5 when the number
of phonemes was less than N to avoid false term detections
in query terms, having less number of phonemes. This cost
(=1.5) was optimized using a development query set. The
total DTW cost D(i, j) at the grid point (i, j) (i = {0, ..., I},
j = {0, ..., J}, where I and J are the number of the set of
arcs in the index and query term, respectively) on the DTW
lattice was calculated by the following equations:

D(i, j) = min

{
D(i, j − 1) +Del(i)
D(i− 1, j) +Null(i)
D(i− 1, j − 1) +Match(i, j) + V ot(i, j)

(2)

Match(i, j) =

{
0.0 : Query(j) ∈ PTN(i)
minBD : Query(j) /∈ PTN(i)

(3)

V ot(i, j) =


α÷ (V oting(p) + Σq(BD(q)

×BDV oting(q)))
: ∃p ∈ PTN(i), p = Query(j),
q ̸= Query(j)

α : Query(j) /∈ PTN(i)

(4)

Del(i) = min


minBD(p, q) : ∃p ∈ PTN(i− 1),

q = Query(j)
minBD(p, q) : ∃p ∈ PTN(i),

q = Query(j)

(5)
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Figure 4: Example of term search on a network-
formed index.

Null(i) = min


NullV ot(i) : Null ∈ PTN(i)
minBD(p, q) : ∃p ∈ PTN(i− 1),

q ∈ PTN(i)
minBD(p, q) : ∃p ∈ PTN(i),

q ∈ PTN(i+ 1)

(6)

NullV ot(i) = β ÷ V oting(Null) (7)

where PTN(i) is the set of phoneme labels of the arcs at
the i-th node in the PTN, and Query(j) indicates the j-th
phoneme label in the query term.
Equation (3) and Eq. (4) are related to the cost calcula-

tion for a substitution error. minBD in Eq. (3) is the small-
est BD between j and any phoneme in PTN(i). V ot(i, j) is
a confidence paremeter for the matching between PTN(i)
and Query(j). “V oting(p)” is the number of ASR systems
outputting the same phoneme p at the same arc. More value
of V oting(p) makes reliability of phoneme p better. BD(q)
is the BD between Query(j) and phoneme q, which is not
correspond to Query(j). BDV oting(q) also means the num-
ber of ASR systems outputting the phoneme q. The cost for
a deletion error is calculated based on Eq. (5). minBD(p, q)
is BD between phoneme p and q. Equation (6) and Eq. (7)
are used for the cost calculation for an insertion error. We
allow a null transition between two nodes in the PTN-formed
index with the cost NullV ot(i) defined in Eq. (7). α and β
are hyper parameters and set to 0.5 and 0.45, respectively.
They were optimized using the development set. The ap-
propriate null cost achieves increasing term detection and
decreasing false detections.
In advance searches for the query term, the term detection

engine initializes D(i, 0) = 0 (both the end-points are free),
and then, it calculates D(i, j) using Eq.(2) (i = {0, ..., I},
j = {1, ..., J}). Furthermore, D(i, J) are normalized by the
length of the DTW path. After completing the calculation,
the engine outputs the detection candidates, which have a
normalized cost of D(i, J) below a threshold θ.

3. DNN-BASED STD APPROACH

ASR ID Outputs	of	10	ASRs	
(all	outputs	are	converted	into	phoneme	sequence)	

ASR #1 n e @ k o a @ r e
ASR #2 n e @ p @ a a r u
ASR #3 n e @ p @ a a r u
ASR #4 n e q p @ a a r e
ASR #5 n o @ b @ a @ @ N
ASR #6 n o @ t @ a @ m e
ASR #7 n e N p @ a @ @ i
ASR #8 n e u p @ a a r e
ASR #9 n e @ p @ a a r e
ASR #10 n e N p @ a @ @ @

n e @ p a a r u@

DNN-based phoneme estimator

Figure 5: DNN-based correct phoneme estimation.

3.1 DNN-based phoneme estimator
Figure 5 shows the outline of the DNN-based phoneme es-

timator. The DNN estimator estimates the correct phoneme
from phonemes belong to the same alignment. For example,
it outputs the correct phoneme /u/ from the the last align-
ment including /e/, /u/, /N/, /i/, and deletion error, even
though the majority phoneme is /e/.

Figure 6 also shows the architechture of the DNN-based
phoneme estimator. The DNN-based phoneme estimator
has a hidden layer, an input layer, and four hidden layers in
this study. We used stacked auto-encoder for training four
hidden layers. The number of nodes in each hidden layer is
1,024. We use a logistic function as an activation function
in the training of output function and stochastic gradient
descent (SGD) for updating parameters. The number of
nodes in the output layer is 35, which is equal to the number
of phoneme classes. The DNN-based phoneme estimator is
trained with the 2,525 lectures in the Corpus of Spontaneous
Japanese (CSJ) using Pylearn2[8].

Each phoneme-alignment has ten phonemes, including null
(phoneme deletion). When a word or a phoneme is con-
verted to a fixed dimensional vector, 1-of-N representation
[17] is typically used. In this case, a phoneme can be repre-
sented as a 35-dimensional vector because we deal 35 sorts
of phonemes in this study. However, we want the DNN to
train phoneme-to-phoneme confusion patterns. Therefore,
we convert phonemes in an alignment to a vector by consid-
ering the similarity between phonemes based on BD. The BD
between phoneme p and q is calculated by the monophone-
based GMMs of p and q. For the distance matrix between all
the phonemes, we apply a principal component analysis to
the matrix, and finally, we can get a five-dimensional vector
for each phoneme by using up to five principal components.
Therefore, the number of dimensions of the input vector
is 50. A deletion error (@) is replaced by the subsequent
phoneme.

3.2 Term search engine
Figure 7 shows an example of the term search process of a

query consisting of seven phonemes for a posterior-gram se-
quence of a target speech. The search process is very simple,
just performs DP matching between a phoneme sequence of
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Figure 6: DNN-based correct phoneme estimation.

a query and a posterior-gram sequence.
In this example, the detection probability of the query

is 0.75. At the same time, the search engine calculates the
maximum probability of the query-detected region using the
best probability of each posterior-gram. In this case, 0.80
is the maximum probability. The final STD score for the
query is 0.94, which is obtained by dividing the detection
probability by the maximum probability in the same region.

4. SYSTEM COMBINATION
We tried four sorts of score combination methods of a

DTW-based score and a DNN-based STD score (same as
detection probability).
One is a simple combination method as following equation,

which is well-known as a weighted linear interpolation. The
recomputed score RS(T, i) of the detection is calculated as
follows:

RS(T, i) = γ ·DNN(T, i) + (1− γ) ·DTW(T, i) (8)

where γ is a weight parameter that controls a balance be-
tween DNN(T, i) and DTW(T, i), DNN(T, i) and DTW(T, i)
are scores of term T in utterance i derived by the DNN-based
and the DTW-based STD methods, respectively. Both of
scores from the two approaches ranges from 0 to 1. γ is de-
termined by the moderate-size query set used in the NTCIR-
10 SpokenDoc-2 [2] and the OOV test collection [9] based
on the CSJ-CORE set, and common for the all query terms
on the test collection.
The second combination is based on the BOSALIS toolkit

[5], which is well-used for score combination on speaker recog-
nition research field. The another method for score combi-
nation is to use Support Vecotor Machine (SVM). The SVM
determines which STD system is better.

phoneme sequence of query 
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Figure 7: Term search for a posterior-gram se-
quence.

5. STD EXPERIMENT

5.1 Target test collection
The Corpus of the 1st to 7th Spoken Document Process-

ing Workshop (SDPWS1to7) is to be used as the document
collection for evaluating the NTCIR-12 SpokenQuery&Doc-
2 SQ-STD subtask.

5.1.1 Speech recognition
As shown in Figure 2 and Figure 5, the SDPWS speech

data is recognized by the 10 ASRs. Julius ver. 4.1.3 [10], an
open source decoder for LVCSR, is used in all the systems.

We prepared two types of acoustic models (AMs) and
five types of language models (LMs) for constructing the
PTN. The AMs are triphone based (Tri.) and syllable based
HMMs (Syl.), where both types of HMMs were trained from
the spoken lectures in the Corpus of Spontaneous Japanese
(CSJ) [11].

All the LMs are word and character based trigrams as
follows:

WBC : word based trigram in which words are represented
by a mix of Chinese characters, Japanese Hiragana and
Katakana.

WBH : word based trigram in which all words are repre-
sented only by Japanese Hiragana. The words com-
posed of Chinese characters and Katakana are con-
verted into Hiragana sequences.

CB : character based trigram in which all characters are
represented by Hiragana.

BM : character sequence based trigram in which the unit
of language modeling is two of Hiragana characters.
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Non : No LM is used. Speech recognition without any LM
is equivalent to phoneme (or syllable) recognition.

Each model is trained from the many transcriptions in the
CSJ under the open for the speech data of STD.
Finally, the ten combinations, comprising two AMs and

five LMs, are formed. The condition is completely the same
as the description in the overview paper [4].

5.1.2 Query set of the STD subtasks
The NTCIR-12 SpokenQuery&Doc-2 organizers provided

two types of query sets: the text query set and the spoken
query set[4]. We evaluated our STD engine on the text query
set only.

5.2 Training DNN-based model
The DNN-based phoneme estimator model was trained

from a part of the CSJ except the 177 lecture speeches, which
are called “CORE” [11]. A total of 2,525 lecture speeches
were used to train models. We performed ASR by the 10
ASR systems described in Section 5.1.1, and all the tran-
scriptions were translated into phoneme sequences.

5.3 STD systems
We prepared six STD systems for the NTCIR-12 STD

subtask as follows:

ALPS-1 : Combination of the DTW- and DNN-based ap-
proaches by the BOSALIS toolkit and SVM.

ALPS-2 : Combination of the DTW- and DNN-based ap-
proaches by the weighted linear interpolation.

ALPS-3 : Only the DTW-based STD approach.

ALPS-4 : Combination of the DTW- and DNN-based ap-
proaches by the BOSALIS toolkit.

ALPS-5 : Combination of the DTW- and DNN-based ap-
proaches by SVM.

ALPS-6 : Only the DNN-based STD approach.

The BOSALIS toolkit and the SVM train the best com-
bination parameter between the detections from the DTW-
and the DNN-based STD systems. The training data for
it is the development set from the moderate-size set of the
NTCIR-10 SpokenDoc-2 STD subtask [2] and the OOV test
collection [9] based on the CSJ-CORE set.

5.4 Experimental results
Table 1 and Table 2 show the summary of our STD per-

formances. Contrary to expectation, the priority system
“ALPS-1” could not get the best performance among all
the submitted systems. No combination approach “ALPS-
3,” which is only the DTW approach, got the best perfor-
mance. This is because that the combination parameter was
trained with the CSJ-based test collection. In the NTCIR-
12, the target speech corpus is the SDPWS lecture speeches.
That is, there is the unmatched environment between the
training and testing of the combination parameter. In ad-
dition, the Kaldi-based ASR systems [16] worked well for
speech-recognizing the SDPWS lecture speeches. For exam-
ple, word-based correct rates for the SDPWS speech was
about 85%. This was adequately high ASR performance.
Therefore, only the DTW-based STD approach achieved the
best performance.

6. CONCLUSION
This paper introduced our STD systems and described the

evaluation results on the NTCIR-12 SpokenQuery&Doc-2
SQ-STD subtask. For the NTCIR-12 evaluation, we pre-
pared the DNN-based STD system that estimates correct
phonemes from the phoneme-based transcriptions of the tar-
get speeches by the multiple ASR systems.

In the experiment on the SQ-STD test collection, our pri-
ority system could not defeat our previous proposed DTW-
based system. This is why we could not optimize the combi-
nation parameter using the BOSALIS toolkit and the SVM.

In future work, we are going to explore the best parame-
ters of the DNN-based phoneme estimator and the system
combination.
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