USTC at NTCIR-12 STC Task

Junbei Zhang, Junfeng Hou, Shiliang Zhang, Lirong Dai

National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China, Hefei, China

Abstract

- **Task: Short Text Conversation (STC)**
- Team: USTC
- System architecture:
 - Lexical features: Query-Response Similarity, **Query-Post Similarity, Transition-p2c**
 - Semantic features: EncDec-Forward model, **EncDec-Reverse model, Joint-Train model**
 - Ranking: linear RankingSVM
- Results: 0.2867 on Mean nDCG@1, 0.4509 on Mean P+, and 0.4181 on Mean nERR@10

System Architecture

We model this task as learning-to-rank problem, and classify the features into two categories: lexical features and semantic features.

Lexical Features

- **Query-Response Similarity**
 - Map query and response to their own TF-**IDF** score vector
 - Calculate cosine similarity between query and response
- **Query-Post Similarity**
 - Calculate cosine similarity between query and post
- **Transition-p2c**
 - Model the transition probability between post words' vector and response words' vector
 - **Example:**
 - Query: Where do we eat?
 - Query-Response: We eat two apples.
 - Query-Post: Where do we go?->We go to the bank.
 - Transition-p2c: Restaurant. (Transition probability between "Where" and "Restaurant", "eat" and "Restaurant" is higher than normal.)
 - Algorithm:

Algorithm 1 Transition-p2c Train

Input: repos-post, repos-comment

Output: transition matrix T

- 1: Word segmentation, and get words' vector of post and comment
- 2: Initialize: T = zeros(m, n), m = length of post vocabulary set, n = length of comment vocabulary set
- 3: IDF score of post set and comment set
- 4: for (p, c) in (post-word vector, comment-word vector) do
- Get tf idf score vector : **p-tf-idf**, **c-tf-idf**
- $T = T + p-tf-idf \cdot c-tf-idf^T$
- 7: end for
- 8: Normalization: for i in [0, m], normalize T[i]

Algorithm 2 Transition-p2c Test

Input: test-query, repos-comment

Output: transition score

- 1: Initialize: score = 0, K = zeros(m, n)
- 2: Get tf-idf score vector of test-query and comment
- 3: $K = query-tf-idf \cdot c-tf-idf^T$
- 4: for (m, n) in K.shapes do
- $score = score + \mathbf{K}[m][n] * \mathbf{T}[m][n]$
- 6: end for

Semantic Features

EncDec-Forward model

Motivated by the work in [Vinyals et al. 2015], [Shang et al. 2015] and [Bahdanau et al. 2014], we use the seq2seq model to estimate P(Response | Post).

EncDec-Reverse model

- Many-to-many: Unlike the machine translation task, one post in STC may have several comments to fit with, and one comment can also fit with more than one post.
- **Reconstruction:** max P(Post | Response)

Figure 1: Encoder-Decoder Model for STC

Joint-Train model

- **Generation & Reconstruction: combine** P(Response | Post) and P(Post | Response) in one model
- Decoder1 is regarded as both a decoder and an encoder (Encoder2).

Figure 2: Joint-Train Model

Ranking

We use linear RankingSVM to merge all the scores and output a final score for each query and response pair.

Experiments

We submit 5 runs:

- **USTC-C-R1:** Query-Response Similarity + **Query-Post Similarity + EncDec-Forward + EncDec-Reverse + Transition-p2c**
- **USTC-C-R2:** Query-Response Similarity + **Query-Post Similarity + EncDec-Forward + EncDec-Reverse + JointTrain**
- **USTC-C-R3:** Query-Response Similarity + **Query-Post Similarity + EncDec-Forward + Transition-p2c**
- **USTC-C-R4:** Query-Response Similarity + **Query-Post Similarity + EncDec-Forward + EncDec-Reverse**
- **USTC-C-R5:** Query-Response Similarity + **Query-Post Similarity + EncDec-Forward**

Results:

Official Results

Table 1: Official STC(Chinese) results

Run	nDCG@1	P+	nERR@10
R5	0.2867	0.4509	0.4160
R4	0.2767	0.4479	0.4181
R1	0.2733	0.4499	0.4169
R2	0.2567	0.4310	0.4001
R3	0.2267	0.4094	0.3848

Offline Training Set Results

Table 2: STC(Chinese) training set results

Run	nDCG@1	P+	nERR@10
R5	0.4741	0.6529	0.6327
R4	0.4785	0.6582	0.6395
R3	0.4726	0.6570	0.6347
R2	0.4889	0.6625	0.6446
R1	0.4859	0.6618	0.6449

Transition-p2c Case Study

Table 3: Transition score top10 of different word

pairs			
post words	comment words	transition score	
运费	代购	0.3207	
(freight)	(purchasing agents)		
中型(medium)	谢谢(thanks)	0.1302	
警报(alarm)	口水(saliva)	0.1273	
元宵节	快乐	0.1260	
(Lantern Festival)	(happy)		
萌到(sprout)	可爱(lovely)	0.1180	
拜年	新年快乐	0.1177	
(pay a New Year call)	(happy new year)	0.1177	
王老吉	加多宝	0.1077	
(Wong Lo Kat)	(JDB Beverage)		
本地(native)	流量(traffic)	0.1066	
小家伙(kiddy)	可爱(lovely)	0.1042	
张国荣	哥哥	0.1007	
(Leslie Cheung)	(brother)		

Conclusions

- The results in training set and cases show the efficiency of the models we proposed.
- The online evaluation is inconsistent with the offline evaluation because of the subset selection problem.