Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

The splab at the NTCIR-12 Short Text Conversation Task

Ke Wu] Xuan Liu, Kai Yu*

Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering

SpeechLab, Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, 200240, China
{ke.wu, 1097114522, kai.yu}@sjtu.edu.cn

ABSTRACT

The splab team participated in the Chinese subtask of the
NTCIR-12 on Short Text Conversation Task. This task as-
sumes that the existing comments in a post-comment repos-
itory can be reused as suitable responses to a new short text.
Our task is to return 10 most appropriate comments to such
a short text. In our system, we attempt to employ advanced
IR methods and the recent deep learning techniques to tackle
the problem. We develop a three-tier ranking framework to
promote the most suitable comments in top position as much
as possible. It consists of three components, i.e., search, lexi-
cal ranking and semantic ranking. In the search component,
three different query generation methods are employed to
boost the system’s recall. In the lexical ranking, we exploit
the training data of labelled post-comment pairs to score
the comments in the candidate pool. In the final semantic
ranking, we apply the deep learning techniques to convert
the comment string or a short text string to a continuous,
low-dimensional feature vector, re-score the final candidate
comments and provide the 10 most reasonable comments to
a short text. The evaluation of submitted results empirically
shows our framework is effective in terms of mean nDCG@1,
mean P+ and mean nERR@10.

Team Name
splab

Subtasks

Short Text Conversation (Chinese)

Keywords

short text conversation, keyword extraction, ranking SVM,
CDSSM

1. INTRODUCTION

The Speech Lab of Shanghai Jiao Tong University partic-
ipated in the NTCIR-12 Short Text Conversation Task [11].
This task aims to tackle a one-round dialogue problem via
retrieval techniques given a large repository of short text
conversation data. The task contains two subtasks, i.e., Chi-
nese subtask and Japanese subtask. Our work focuses on the
Chinese subtask.

*Corresponding authors.

493

Over the last decades, there is much effort on natural
language conversation research, which models a complete
dialogue session, typically with several rounds of interac-
tion [16]. Short text conversation task is a simplified version
of natural language conversation between human and ma-
chine. It simplifies natural multi-round dialogue to a single-
round one formed by two short texts.

In the subtask, we build a single round of retrival-based
dialogue system based on a repository of weibo data, which
is provided by the competition’s organizers. Too many irrel-
evant candidate comments can potentially hinder a system’s
ability to identify the appropriate response from the large
pool of candidates [2] . Consequently, our system attempts
to facilitate high short text conversation performance by a
three-level ranking framework.

Our system consists of three componets: search, lexical
ranking and semantic ranking. In the search component, we
convert a short text (a query) to query terms and try to
retrieve relevant contents as intial candidate comments. To
boost the system efficiency, we use a threshold for the search
hit list to narrow the candidate space to a small number
of possiblities. However, such a brute-force approach may
hamper the recall of the appropriate comments. In our sys-
tem, we employ three different query terms conversions from
an original short text, to generate three sets of candidates
independently.

The lexical ranking component further identifies potential
comments to a short text from the downstream candidates
of the search component. In this component, we exploit a
ranking model to score the downstream candidates and form
a reduced candidate set.

In the semantic ranking component, we merge the three
sets of reduced candidates from the lexical ranking com-
ponent to form the input candidates, calculate the semantic
similarities between the short text and these candidate com-
ments based on deep learning models and generate the final
plausible candidate list.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our systems in detail. Our experimental
results are presented in Section 3 . We conclude in Sec-
tion 4 .

2. OUR SYSTEM

In this section, we will elaborate on three components of
our system, respectively. Figure 1 illustrates the framework
of our system.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

==

Short text analysis
Post -comments _'| Retrieval ‘
I I I |

3 3 1
A 4 A 4 A4 ‘
v

Search

Surface feature extraction

S

Lexical Ranking

i §

Distributed representations
of comments

h 4

Figure 1: Our three-tier ranking framework. It en-
capsulates three main components, i.e., search, lex-
ical ranking and semantic ranking.

2.1 Search Component

2.1.1 Short Text Analysis

Short text analysis is a key step for the search component.
Typically, search query terms for a short text are generated
by the short text analysis. In our system, we retain all pos-
sible segmented words and ignore all stopword terms [13] ,
which carry the negligible information, while converting a
short text into query terms. We use all potential words
with equal weights in multi-granularity word segmentation
for the retrieval to improve search recall. In order to in-
crease system performance, we have to determine the size
of the search hit list to strike a balance between increased
candidate recall and the processing time cost.

The query term generation strategy aforementioned usu-
ally provides an effective candidate list. However, the rele-
vant comments may not be ranked in top positions because
of a lot of uninformative query terms from all possible words
of a short text in some cases. To avoid the adversity, we at-
tempt to resort to the keyword identification to alleviate the
noise information overload problem. For convenience, we use
MG short for the above method.

Traditional keyword extraction techniques can help detect
or recognize the focus with salient information, also called
keywords for a short text. In our system, we use two state-
of-the-art methods, i.e., TFIDF and TextRank [10] .

The idea of the TFIDF method is to identify words that
appear frequently in a short text but occur rarely in the
entire background collection. Much work [3, 5, 15] has
shown that TFIDF performs well in extracting keywords.
The term frequency (T'F) for a word ¢; in a document is
the number of times the word occurs in the document. The
IDF value is:

IDF; = log(N/N;) (1)

where N; denotes the number of the documents containing
word t;, and N is the total number of the documents in the
collection.

In our system, a short text typically has a relatively small
length. Consequently, IDF factor makes a major contri-
bution while TF' factor plays a minority role for keyword
extraction of a short text. Therefore, we can consider that
TFIDF just employs a global information to detect key-
words.

494

TextRank is another short text analysis technique used
in our system. It employs graph-based methods similar to
Google’s PageRank algorithm [1]. In order to construct the
text graph, TextRank considers words as vertices, defines
co-occurrence relations within a window of maximum words
as links between words or vertices and thus generates a po-
tentially useful connections (edges). In addition, TextRank
boosts its efficiency and accuracy by selecting only lexical
units or words of a certain part of speech.

When the text graph is constructed, we iterate the follow-
ing formula until convergence for the final scoring of words.

SVi)y=(1—d)+dx Y S(Vi) (2

Vi€In(Va) v, e Out(v;)

Wij
Wk

where V; is a word vertex, S(V;) denotes the score of V;, w;;
is the strength of the connection between two vertices V; ,
V;, In(V;) is the set of word vertice that link to Vi, Out(Vj;)
is the set of word vertice to which a vertex V; points and d is
a damping factor between 0 and 1, which serves as the role
of modeling the probability of jumping from a given vertex
to another random vertex in the text graph.

The performance of Text Rank depends on the constructed
text graph and the mask POS set and hence we can con-
sider TextRank identifies the salient words from the local
text perspective.

In our system, the output of short text analysis module
is the query terms with weights generated by MG, TFIDF
and TextRank, respectively.

2.1.2 Retrieval

Our system’s retrieval module uses the open-source Lucene
search engine [8] to index all post-comment pairs. We use
the default similarity function in Lucene. The score between
short text ¢ and s is caculated by Eq. 3.

score(q, s) = co(q, s)-qn(q)~2{tf(t € 5)-idf(t)*-w;-norm(t, s)}

teq

(3)
where tf(¢t € s) is defined as the number of occurrences of
the term ¢ in the currently scored text s, idf(t) stands for
inverse document frequency of the term ¢, co(g, s) denotes
the proportional of the query terms are found in the specified
text s by \q‘r;ls\ , qn(q) is a normalizing factor for comparable
scores between texts, w: is a weight of term t in the text
g, norm(t, s) encapsulates a few (indexing time) boost and
length factors. Readers are referred to [8] for more details.
In this retrieval module, we retrieve the repository in both
post and comment fields, select a certain amount of individ-
ual top results , for instance, 5K, and merge all possible
comments as a candidate pool. Note that MG, TFIDF
and TextRank are employed independently for the above

procedure.

2.2 Lexical Ranking Component

The search component produces the intial comment candi-
date set on the basis of the text similarity. This component
attempts to promote all the relevant comments to the top
of a ranked list based on the downstream comment candi-
dates by leveraging a small portion of labelled post-comment
pairs.

Lexical ranking component contains two parts. One is sur-
face feature extraction and the other is SVM ranking. The
surface feature module collects and generates some features,

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

such as similarity featues and matching features, which is fed
into the SVM ranking model. The features used in the SVM
ranking model are illustrated in Table 3. We use some search
scores associated with a candidate comment for re-scoring
the candidate set from the search component, in conjuction
with additional matching features generated by considering
character or word matching information [6, 14]. In our sys-
tem, we also call these search scores associated with a candi-
date comment as similarity features. In addition, Post_Num
is used as a feature which avoids a general response as much
as possible. With all these features on hand, we wish to
apply a well-trained SVM ranking model to improve our
system’s ability to rank the relevant comments in top posi-
tion.

In the SVM ranking module, we use the ranking SVM [7]
by Thorsten Joachims, which is an variant of the support
vector machine algorithm. The ranking SVM exploits the
techniques of SVM to learn a global ranking function F' from
an ordering O. In our system, we assume that F is a linear
ranking function such that

Y{(xi,2;) :ys <y; € O} : Fla;) > Flx;) o w' z; >w’x;
(4)
where z; is an instance with label y; and a weight vector w
is learned by a learning algorithm.
The ranking SVM algorithm translates the above problem
into an optimal problem as below.

L(w, &) = 5wl + 0 &y
w'z; > wT:tj +1—&;

V(i,7) 1 &; = 0

(@i, z5) - yi <y; € O}

minimize:

subject to:

()

When ranking SVM is applied in our system, an instance
(feature vector) is created from a labelled post-comment
pair. The details of these features can be referred to Ta-
ble 3. The instances from all labelled post-comment pairs
are then combined in training. There is no difference in
treatments toward the instances from different labelled post-
comment pair. Furthermore, the well-trained ranking SVM
model is used to score the downstream candidate comment
set. Finally, the different search strategies along with the
SVM ranking yield results that are aggregated for further
processing.

2.3 Semantic Ranking Component

In this component, we recieve and re-rank the aggregated
results of three different search strategies from the lexical
ranking component by semantics. We attempt to generate a
representation to capture fine-grained contextual structures
for the similarity calculation of a short text and its candidate
response.

Deep learning techniques have been proposed for natural
language understanding [4, 12, 9]. In our system, we try to
leverage deep learning techniques in our semantic ranking
component and hence adapt the CDSSM [4, 12] to Chinese
sentence embedding, which attempts to capture the rich con-
textual structures in a sentence or short text.

The architecture of our adopted Chinese CDSSM is il-
lustrated in Figure 2. The model encampasses four layers.
The first layer is word n-gram layer. In this layer, we ob-
tain a word n-gram by moving a contextual sliding window

495

Semantic layer
Take max operation at
each dimension

\
7
1

/TXIN

<s> Lig

Max-pooling layer

Abtraction layer
Word n-gram layer

/1N

z—

B Kb <s> Short Text

Figure 2: The simplified version of Chinese CDSSM.
In order to obtain a full window for a word at any
position in the input word sequence, we add a special
padding word, <s>, at the beginning and the end
of the input word sequence.

over the input word sequence (such as a short text or a re-
sponse) similar to CDSSM and represent each word n-gram
as the sum of the embeddings of the words it contains. The
second layer, i.e., abstraction layer, generates a high-level
feature vector for each word n-gram representation. The
max-pooling layer discovers and catenates salient features
from abstraction layer to form a fixed-length feature vector.
In the semantic layer, we apply a regular feed-forward fully
connected neural network to the fixed-length feature vector
to obtain the final sentence embedding. In this model, we
perform the non-linear transformation by Eq. 6.

he = tanh(W - hy—1) (6)

where W is the feature transformation matrix and ¢ denotes
the level of a hidden layer. tanh is used as the activation
function of the neurons.

1 —exp(—2x)
 14exp (—2x) (7)

Note that, in our model, the feature transformation matrix
from word n-gram layer to abstraction layer is shared among
all word n-gram representations.

Given a short text and a set of comments to be ranked, we
first use the aforementioned model to obtain the semantic
vector representations for the short text and all candidate
comments. Then we employ the cosine similarity between
the short text and each candidate comment to measure the
relevance score between them. We can formally define the
semantic relevance score between a short text ¢ and a can-
didate comment c as below.

tanh(zx)

- b ®)
el

where y, and y. are the semantic vectors of the short text
q and the candidate comment c, respectively.

In order to determine the parameters of the model, we
have to define the objective function. For short text conver-
sation task, we wish to have higher relevance between a post
and the corresponding comment than that between the post
and other comments. Similar to [4], we convert the semantic
relevance score between a short text and the corresponding
comment to the posterior probability of the comment given
the short text via softmax operation.

R(g,¢) = cosine(yy, y.)

exp(vR(q,c))
vec ep(vR(g,)

plclq) = > 9)

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

Table 1: Features of re-ranking the candidate set from the search component

Types Features Meanings
Q20 Similarity between the query ¢ and the candidate
comment ¢
Average of the similarities between the query ¢
Q2P_Ave and the posts with which the candidate comment
o c is paired
Similarity Features Maximum of the similarities between the query ¢
Q2P_Max and the posts with which the candidate comment
c is paired
Minimum of the similarities between the query ¢
Q2P_Min and the posts with which the candidate comment
c is paired
Length of the longest common string between the
LCS .
query g and the candidate comment ¢
LCS. Rate Ratio of LCS to the length of the candidate
comment
. Number of co-occuring words between the query
Co_Size .
) q and the candidate comment ¢
Matching Features Ratio of Co_Size to the number of words in the
Co_Rate .
candidate comment c
Co IDF_Sum Sum of IDFs of co-occuring words between the
query g and the candidate comment ¢
Co IDF. Ave Average of IDFs of co-occuring words between the
query g and the candidate comment ¢
Others Post_Num Number of the posts with which the candidate

comment c¢ is paired

where (g, ¢) is a (post, comment) pair, C' is the set of can-
didate comments to be ranked and 7 is a smoothing factor
in the softmax function.

In the training phase, the model parameters are learned
to maximize the likelihood of the corresponding comment
given a post across the post-comment repository. In other
words, we can obtain the model parameters by minimizing
the following loss function.

L(0) = —log [] p(claq)

(a,c)

(10

Nt

where @ denotes the parameters of the model.

The similarity model is illustrated in Fig. 3. We can
observe that the semantic tranformation structure of a post
text has the same as that of a comment text. Two different
approaches are adopted for the weight parameter tuning.
One is that the weight update is asynchronous for post text
and comment text and the other is that the weigh update is
shared for a post text and a comment each time. In other
words, we can consider the conversation of post text to its
semantic feature vector is different from that of comment
text while we also assume that the conversation to semantic
feature vector is the same for both post text and comment
text. In our experiments, we empirically found that the part-
of-speech tagger information of a short text is useful for the
generation of the semantic feature vector. Therefore, we use
as our word-n-gram representation, the catenation of the
original word n-gram feature and one-hot representation of
POS taggers it contains for each word.

When we compute the relevance score between a short

496

p(c|q)

L L,

Post Text q Comment Text c

Figure 3: The similarity model Structure. The left
of the circle has a common structure with the right
of the circle. The structure in the left/right side
denotes that of the post text q / the comment text
c

text and a candidate comment, we use three different strate-
gies to transform them into the semantic feature vectors as
shown in Table 2. The asynchronous weight update policy
for model training indicates that the weight matrices are up-
dated according to the objective function while the shared
weight update policy implies that in Fig. 3, the left struc-
ture shares the same parameters with the right structure in
training.

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

Table 2: Three different transformation strategies
from a text string to a feature vector in a continuous,
low-dimensional space. L /R denotes that we use the
left /right model structure in Fig. 3 to convert a text
string to a feature vector.

No. weight update post vector cmnt vector
1 asynchronous L R

2 asynchronous R R

3 shared LorR LorR

3. SUBMITTED RESULTS

In Chinese short text conversation task, we totally submit
three runs. The evaluation results are listed in Table 3.
splab-C-R1 uses the framework illustrated in Fig. 1. In the
semantic ranking phase, it employs ranking SVM to combine
three different semantic relevance scores. splab-C-R2 and
splab-C-R3 just apply the semantic ranking component in
Fig. 1. splab-C-R2 uses the first method in Table 2 to
generate the feature vectors whereas splab-C-R3 employs
the third method in Table 2 to obtain the feature vectors.

We observe in Table 3 that splab-C-R1 performs much
better than splab-C-R2 and splab-C-R3 in terms of three

metrics, i.e., Mean nDCG@1, Mean P+ and Mean nERR@10.

To our surprise, both pure semantic ranking methods, i.e.,
splab-C-R2 and splab-C-R3 don’t have a good performance.
This may suggest that our semantic ranking is not good at
bringing the suitable candiate comments to top positions
in the overly large candidate pool with much noise while it
can eliminate the irrelevant candiate comments from a small
candidate set with few noise comments. Meanwhile, this ob-
servation also leaves room to improvement for the semantic
ranking method.

4. CONCLUSIONS

Natural language conversation between human and com-
puter is a very iinteresting and challeging research topic. In
the last decades, there are a lot of effort on the research.
However, there is little progress in this area. With the pro-
liferation of the social media such as Twitter and Weibo, the
large amount of short text conversation data are available
online. This provides us a new opportunity to rethink and
crack the problem.

In this task, we attempt to combine the some IR technolo-
gies with the deep learning techniques to attack the problem.
Our system uses a three-tier ranking strategy to identify the
potential responses to a short text. A basic idea in achieving
high short text conversation performance is to collect suffi-
cient candidate comments including the suitable responses
in the small candidate pool.

In this paper, we described our system’s three-pronged
strategy for identifying proper responses that balance high
candidate recall and processing time for candidate scoring.
In the search component, we use three different methods to
formulate effective queries to retrieve the satisfactory candi-
dates as many as possible, respectively. In the lexical rank-
ing component, we employ surface feature extraction module
to extract some lexical features to re-rank the three individ-
ual downstream candidate pools. Then we choose top 10
candidate comments from each candidate set and aggregate
them as the final candidate pool. In the semantic rank-

497

ing component, we leverage the ranking SVM to combine
three different transformation strategies from a text string
to a continuous, low-dimensional feature vector for final fine-
grained semantic ranking.

The evaluation on a test set of 100 test queries provided
by the organizers shows that our three-tier ranking system is
effective. Overall, all strategies make positive contributions.

Acknowledgement

This work was supported by the Program for Professor of
Special Appointment (Eastern Scholar) at Shanghai Insti-
tutions of Higher Learning, the China NSFC project No.
61573241 and the Interdisciplinary Program (14JCZ03) of
Shanghai Jiao Tong University in China.

S.
1]

REFERENCES

S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
Seventh International Conference on World Wide Web
7, WWWT7, pages 107-117, 1998.

J. Chu-Carroll, J. Fan, B. Boguraev, D. Carmel,

D. Sheinwald, and C. Welty. Finding needles in the
haystack: Search and candidate generation. IBM
Journal of Research and Development, 56(3):6, 2012.
E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin,
and C. G. Nevill-Manning. Domain-specific keyphrase
extraction. In Proceedings of IJCAI ’99, pages
668-673, 1999.

J. Gao, P. Pantel, M. Gamon, X. He, and L. Deng.
Modeling interestingness with deep neural networks.
In Proceedings of EMNLP, pages 2-13, 2014.

A. Hulth. Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of the
2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP 03, pages 216-223,
Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

Z. Ji, Z. Lu, and H. Li. An information retrieval
approach to short text conversation. CoRR,
abs/1408.6988, 2014.

T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of KDD ’02, pages
133-142, 2002.

M. McCandless, E. Hatcher, and O. Gospodnetic.
Lucene in Action, Second Edition: Covers Apache
Lucene 3.0. Manning Publications Co., Greenwich,
CT, USA, 2010.

G. Mesnil, X. He, L. Deng, and Y. Bengio.
Investigation of recurrent-neural-network architectures
and learning methods for spoken language
understanding. In Interspeech, 2013.

R. Mihalcea and P. Tarau. Textrank: Bringing order
into texts. In Proceedings of EMNLP 2004, pages
404-411, Barcelona, Spain, July 2004.

L. Shang, T. Sakai, Z. Lu, H. Li, R. Higashinaka, and
Y. Miyao. Overview of the NTCIR-12 short text
conversation task. In Proceedings of NTCIR-12, pages
1-100, 2016.

Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil.
Learning semantic representations using convolutional
neural networks for web search. In Proceedings of the

2]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(1]

(12]

Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan

[13]

[14]

[15]

[16]

Table 3: Evaluation results of Chinese short text conversation task for three runs

Run name Mean nDCG@Q1 Mean P+ Mean nERR@10
splab-C-R1 0.2933 0.4735 0.4449
splab-C-R2 0.0967 0.2069 0.1831
splab-C-R3 0.0967 0.1896 0.1650

23rd International Conference on World Wide Web,
pages 373-374. ACM, 2014.

C. J. van Rijsbergen. Information Retrieval, 2nd
edition. Butterworth-Heinemann, 1979.

H. Wang, Z. Lu, H. Li, and E. Chen. A dataset for
research on short-text conversations. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 935—945, October 2013.
A. M. Yaakov HaCohen-Kerner, Zuriel Gross.
Automatic extraction and learning of keyphrases from
scientific articles. In Computational Linguistics and
Intelligent Text Processing, pages 657-669, 2005.

S. Young, M. Gasi¢, S. Keizer, F. Mairesse,

J. Schatzmann, B. Thomson, and K. Yu. The hidden
information state model: A practical framework for
pomdp-based spoken dialogue management. Comput.
Speech Lang., 24(2):150-174, Apr. 2010.

498

