Microsoft Research Asia at NTCIR-12 STC Task

Zhongxia Chen2, Ruihua Song1 and Xing Xie1

1 Social Computing Group, Microsoft Research Asia
2 University of Science and Technology of China
Motivations

• Similar comment?
 – May be relevant but repetitive

| Test Post | 看这几天天气挺好的，到上海去玩一圈
Since the weather is good these days, I'd like to go to Shanghai for a visit |
| Comment1 | 到上海去玩?
Going to Shanghai? |
Motivations

• **Similar post?**

 – Not bad

| Test Post | 看这几天天气挺好的，到上海去玩一圈
Since the weather is good these days, I'd like to go to Shanghai for a visit |
|-----------|---|
| Comment1 | 到上海去玩?
Going to Shanghai? |
| Similar Post | 看这几天天气挺好的，到北京去玩一圈
Since the weather is good these days, I'd like to go to Beijing for a visit |
| Comment2 | 羡慕
Envying you |
Motivations

• Similar post?

 – But perhaps too specific

| Test Post | 看这几天天气挺好的，到上海去玩一圈
Since the weather is good these days, I'd like to go to Shanghai for a visit |
|---|--|
| Comment1 | 到上海去玩?
Going to Shanghai? |
| Similar Post | 看这几天天气挺好的，到北京去玩一圈
Since the weather is good these days, I'd like to go to Beijing for a visit |
| Comment2 | 羡慕
Envying you |
| Comment3 | 推荐去颐和园
I recommend you to go to the Summer Palace |
Our Ideas

• Two observations
 – The comments responded to similar posts are good candidates
 – The more common a comment is, the less risky
System Description

- **Preprocessing**
 - Stanford Chinese Word Segmenter
 - Filter stop words

<table>
<thead>
<tr>
<th>Short Text ID</th>
<th>repos-cmnt-1000578260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin Text</td>
<td>西班牙踢球多黏啊总看传球了’意大利必胜 (Spain always passes and I will support Italy)</td>
</tr>
<tr>
<td>Segmentation Result</td>
<td>西班牙 踢球 多 黏 啊 总 看 传球 了 ’ 意大利 必胜</td>
</tr>
<tr>
<td>Filtering Result</td>
<td>西班牙 踢球 黏 总 传球 意大利 必胜</td>
</tr>
</tbody>
</table>
System Description

Feature Generation

- Post-Post Similarity
 - Generate word vectors
 - Google Word2Vec
 - External Chinese Corpus
 - Generate short text vectors
 - Summation of word vectors
 - Calculate similarity
 - Cosine similarity
 \[F_{sim}(p, Ci) = \frac{\mathbf{v}_p \cdot \mathbf{v}_{Ci}}{|\mathbf{v}_p| \cdot |\mathbf{v}_{Ci}|} \]
System Description

Feature Generation

Popularity

- Count frequencies of comments
- Top ten comments in repository

<table>
<thead>
<tr>
<th>Comment</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>哈哈(laug)</td>
<td>14830</td>
</tr>
<tr>
<td>哈哈哈哈哈(laug)</td>
<td>8096</td>
</tr>
<tr>
<td>呵呵(no comment)</td>
<td>8075</td>
</tr>
<tr>
<td>嗯(fine)</td>
<td>4443</td>
</tr>
<tr>
<td>哈哈哈哈(laug)</td>
<td>4297</td>
</tr>
<tr>
<td>不错(not bad)</td>
<td>4222</td>
</tr>
<tr>
<td>好(good)</td>
<td>3676</td>
</tr>
<tr>
<td>是的(yes)</td>
<td>3472</td>
</tr>
<tr>
<td>喜欢(I like it)</td>
<td>3216</td>
</tr>
<tr>
<td>赞(great)</td>
<td>3209</td>
</tr>
</tbody>
</table>
System Description

Feature Generation

- Popularity
 - Count frequencies of comments
 - Considering Power Law
 - Generate popularity feature by log function of frequency

\[F_{pop}(Ci) = \log(Frequency(Ci)) \]
System Description

- **Ranking**
 - Retrieve top k comments with closed corresponding posts using similarity feature, then re-rank by popularity in a small range.
 - Train a linear model
 \[
 \text{Score}(p, Ci) = F_{sim}(p, p') + w \cdot F_{pop}(Ci)
 \]
 where, Ci is a comment of p’. Then rank by score.
Experiments

• Submitted three runs
 – MSRSC-C-R1: ranking by a linear combination of post-post similarity and popularity
 – MSRSC-C-R2: retrieving top 50 comments by post-post similarity and re-ranking by popularity
 – MSRSC-C-R3: ranking by post-post similarity

• Word2vec settings
 – Skip-gram model
 – Window size is 10
 – Vector length is 100
Experiments

• Result for 3 runs

<table>
<thead>
<tr>
<th>Run</th>
<th>Mean nDCG@1</th>
<th>Mean P+</th>
<th>Mean nERR@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRSC-C-R1</td>
<td>0.3367</td>
<td>0.4854</td>
<td>0.4592</td>
</tr>
<tr>
<td>MSRSC-C-R2</td>
<td>0.2733</td>
<td>0.4208</td>
<td>0.3857</td>
</tr>
<tr>
<td>MSRSC-C-R3</td>
<td>0.0933</td>
<td>0.2420</td>
<td>0.2236</td>
</tr>
</tbody>
</table>

– Population is surprisingly helpful
– Linear model is better than retrieval and re-ranking model
 • Range of best fifty similar posts is uncertain
Conclusions

• Post-post similarity is useful
 – We use word embedding in representing short texts

• Popularity of comments is helpful when being combined with post-post similarity
Thank you!

Contact: rsong@microsoft.com