
Scoring of response based on suitability of dialogue-act and content similarity

Kyoto Institute of Technology

Sota Matsumoto, Masahiro Araki

Short Text Conversation

When an utterance is given, we search for the appropriate utterances as the response from the repository of pairs consisting of post and comment on it.

Scoring of Reply Utterance

To evaluate an utterance, we use the score obtained by multiplying following two evaluation values.

Interactive Functional Suitability

The suitability in function of conversation with the utterance as a response to the input utterance.

Content Similarity

Such as the story of soccer and lecture of university, similarity of topics with utterances.

$$Score(p, t_a) = ifs(p, t_a) * csim(p, t_a)$$

 $ifs(p, t_a)$ and $csim(p, t_a)$ are evaluation values of the above mentioned of any one of the utterance in the repository t_a to new given utterance p.

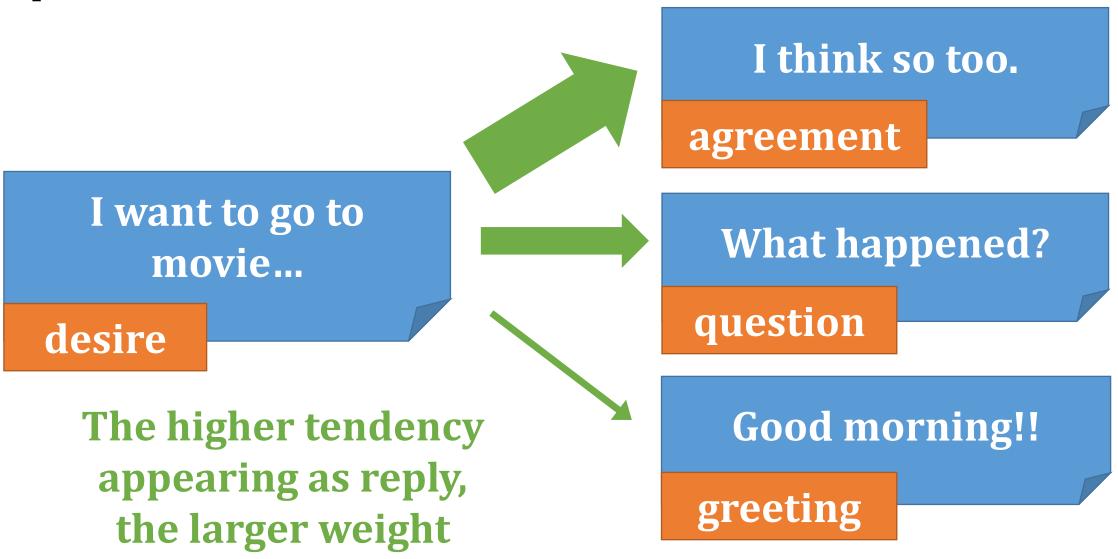
Interactive Functional Suitability

The estimated values of interactive functional suitability are learned by the relationship of dialogue-act.

□ Dialogue-act

Dialogue-act indicates the function of utterance in the conversation.

e.g. greeting, question, desire, etc.


In order to design dialogue-acts adapted to the domain, we classify it by using the **Chinese Restaurant Process (CRP)**.

□ Relationship weights

learn the relationships between dialogue-acts as weight table.

$$W[i][j] = \frac{count(i,j)}{N}$$

count(i,j) is the number of times that dialogue-act j is replied to i.

Using this table, it is possible to determine the suitability of utterances in the repository to a new one.

$$ifs(p,t_a) = W[dae(p)][dae(t_a)]$$

dae(*) is a dialogue-act estimator for utterance.

Content Similarity

Content similarity is obtained from cosine similarities of documents for the following 2 type of vectors.

□ LDA (Latent Dirichlet Allocation)

estimate the potential topics to which the document belongs

These words belong to the same topic

hospital doctor
topic: medical
medicine

□ IDF (Inverse Document Frequency)

search documents with common words having high informativeness

$$csim(p, t_a)$$

$$= \alpha * lsim(p, t_a) + (1 - \alpha) * isim(p, t_a)$$

lpha is the parameter for adjusting the ratio of LDA and IDF

Experimental Results

■ Data

training data: 822,254 posts (411,127 pairs)

testing data : 202 posts

□ Dialogue-act Classification

As a result, training data were classified into **41** dialogue-act.

About half of the data belonged to one cluster, and factors that make up the cluster mainly were case particles that are not directly related to the function of utterance.

■ Evaluation Results

10 annotators annotated in the three-degree evaluation of 0-2 according to the appropriateness of the response.

α	case 2-1	case 2-5	case 12-1	case 12-5
0.0	0.2297	0.2050	0.5589	0.5380
0.4	0.1817	0.1743	0.4748	0.4535
0.5	0.1812	0.1660	0.4614	0.4317
1.0	0.0787	0.0787	0.2114	0.2130

In "case X-Y", X is a set of evaluation values to determine that the response is appropriate, and Y is the lowest rank number of the candidates evaluated in each utterance.

Conclusion

- Select appropriate replies to a given utterance from the conversation data repository.
- Score an utterance by interactive functional suitability and content similarity.
- As a result, dialogue-act didn't basically work well, also content similarity was obtained a higher evaluation in the case of not using the LDA.
- We will filter the words used in determining factor in the classification of dialogue-act in the part-of-speech, also try increasing the number of dimensions of the vector of LDA.