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Background Related work Our approach

In data-driven approaches for chat-dialogue

modeling, the diversity of domains (topics, Classify training data by several Cluster conversation data to
speaking styles, emotions..) makes it difficult emotion types each response elicits automatically capture the difference of
to learn and train multiple models domains and train specific models
[Hasegawa+, "13] | |
fU: ZAA0—UFXULT! ) f U : Utterance \ * @ Domain-consistent
R BONESZSVET ! ' R:Response responses

U: E£-BEH - - - U: S—XAVBAREVNSS But it is impossible to enumerate all @ Smaller size of the training
R E=HK535%=% - - - g R: SHOD®{TZ > domains in human dialogues by hand data per a model

Proposed Method

O Apply k-means clustering to the utterance vectors ® Train multiple LSTM-based dialogue models by each domain-
and regard clusters as subsets of the training data specific training data subset
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computation by the pre-trained classifier [yoshinaga+, ‘10 ‘' Y%7 i ... 000
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Experiments

@Effectiveness of clustering Difference between baseline and proposed method
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Evaluation method
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We defined it as [@)77_52“-‘?«5* _______ ] 1 (appropriate in some context), and 2 (appropriate) by human,

success if the top-3 .-~ and evaluated the proportion of 1 and 2, or only 2 for the top-1 or top-5
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selected responses.
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Results R2 : Responses only pre-filtered
Acc. @3 (% o TP @ Accuracy on the
@3 (%) Best Result (35.4%) y @ Filtering performance NTCIR-12 STC task
40.0 —o— :ra?n?ng :ataf 2;140“}1 0.40 .
350 04 —&— 1raining data. 0.35
30.0

25.0 -
20.0 Baseline (30.8%) Random Baseline (15.0%)

L1
: ' B R2
0.30
: >‘0.25
: ' _ § 0.20
0.10
Number of clusters 00 0.00

0.2
1 5 ] O D D D D D D D D CGED G GG b GCGEB  CGEB G e—-ma
10.0 0.1
0 10 20 30 40
0 2000 4000 6000 8000 10000 1,2-rank1 1,2-rankb 2-rank1 2-rankb5
N (number of selected responses from 420k candidates)

recall




